A head and shoulders profile photo of Haluk Demirkan, senior manager of Devices Demand Science
Haluk Demirkan, senior manager of Devices Demand Science, says his goal at Amazon "is to build an ecosystem in which technology is doing the labor-intensive tasks, freeing my team to do more smart work and value-added tasks."

How Haluk Demirkan is using ML-powered forecasts to get the right devices to the right place at the right time

Part-time sabbatical plan turns into full-time role for author of five books and more than 170 research articles.

For years, Amazon has been at the forefront of machine learning and data science. At the same time, the company has pioneered the large-scale automation of processes at all levels of its supply chains. But in its fast-moving commercial world, the constant challenge is to integrate these complementary fields to create processes that optimize the delivery of customer value.

Related content
A combination of audio and visual signals guide the device’s movement, so the screen is always in view.

In 2021, Haluk Demirkan joined Amazon to boost the company’s efforts for that kind of integration. As the senior manager of Devices Demand Science, Demirkan is building and leading a team dedicated to using cutting-edge data analytics, machine learning, and process optimization — among other techniques — to transform sales predictions for Amazon devices, from the Kindle, the Echo family of devices, and Fire Tablets, to Fire TVs, and Ring Video Doorbell — an enormously important task.

To understand why the company’s Devices organization is excited about Demirkan’s arrival, a little background is required. Demirkan first came to the US from Turkey in 1991 on a three-month language course to improve his English. Three decades later, he hasn’t left. Instead, he has built a pioneering transdisciplinary career at the intersection of data science, service science, smart machines, and industry.

Bridging industry and academia

He earned a master’s in industrial and systems engineering and in 2002 completed a dual-degree PhD in information systems and operations management at the University of Florida. He gained these qualifications while simultaneously working full-time for AT&T Bell Labs (as it was then known) and Citibank in data analytics, process engineering, and price and supply chain optimization.

By the time he earned his PhD, Demirkan had already spent 11 years in industry, so in 2002 he decided to give full-time academia a try. He joined Arizona State University as an assistant professor, primarily teaching information systems, analytics and supply chain management. While at ASU, Demirkan co-edited two seminal research books in the emerging fields of service science and systems, and its industry-based implementation.

Related content
The collaboration will focus on advancing innovation in core robotics and AI technologies and their applications.

In 2013, he moved to the University of Washington-Tacoma as an associate professor of service innovation and business analytics, tasked with expanding research and education programs in business analytics. He eventually became founding director of the Milgard School’s Center for Business Analytics and Master of Science Business Analytics, and the founding assistant dean of the Analytics Innovations Hub.

So far, he has published five books and more than 170 research articles. In 2021, Demirkan’s work and community building were recognized by the university with an award for both Distinguished Research and Community Engagement.

Throughout this academic stretch of his career, Demirkan maintained strong links with industry, developing data science, engineering and smart analytics solutions for dozens of leading companies, including IBM, GE, Cisco, HP, Intel, Bank of America, and Mayo Clinic. With AWS Academy Educator Accreditation, he still teaches a data analytics course at the University of Washington-Tacoma on weekends, guiding his students in developing AI and data-analytics-based solutions to novel business problems.

Researching “big problems”

So how did he end up full-time at Amazon?

“I’d come close to one of the highest positions in the academic career path,” says Demirkan. “The next step would have been to become a dean somewhere. But I didn’t want to be dean for near term: I prefer working on research for big problems.”

So, after almost two decades in academia, he decided to take a sabbatical. However, his restless nature meant he couldn’t be idle, so Demirkan applied to become an Amazon Scholar, a flexible program designed for academics who want to tackle large-scale technical challenges.

His plan: work one day a week during his sabbatical. During the interview with Amazon, however, it became clear that some of Amazon’s big business challenges dovetailed with Demirkan’s skillset so strongly — and offered him the opportunity to make such a big impact — that he decided to join the company full time by taking a leave from UW.

“My wife was like, ‘This is not a sabbatical!’”, recalls Demirkan.

The power of demand prediction

In his new Seattle-based role, Demirkan has two primary areas of business focus. The first is in making sales demand predictions for most Amazon devices. His team produces sales predictions for the majority of device types, globally, in which Amazon has a presence, and for every day from now until a year in the future.

To do this, Demirkan’s team ingests device sales data to train machine learning algorithms to generate increasingly accurate sales forecasts. Specifically, the team is employing advanced time-series forecasting methods, such as Random Forest, XGBoost, and Ridge Regression.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

“Based on that predicted demand, another Amazon team ships just the right amount of product to the right locations, so it’s where it needs to be just as a customer chooses to make that purchase,” says Demirkan. “Basically, our goal is to get the right amount of devices to the right place at the right time to better meet our customers’ needs. That's our goal.”

The forecasts Demirkan’s team creates do more than mere prediction. The team can also, for example, make projections for sales based on varying promotional prices.

“How many customers in London are going to buy a Kindle on April 21, if the price is x? The forecast assists our executive management teams to make decisions around how many units to manufacture, how many to ship, and when to ship,” says Demirkan.

By providing the company’s supply chain with increasingly accurate demand forecasts, Amazon simultaneously reduces delivery times and supply chain costs, helping the company keep prices low, while increasing customer responsiveness.

Demirkan is also developing a comprehensive, science-driven forecasting model called “Intelligent Demand Plan”. It will combine a wider range of inputs, including product cannibalization, macro-economic factors, traffic, social media and lots more, to sense demand and customer preferences with greater nuance, and to gain early insight into emerging market trends.

Automation and optimization

Demirkan’s second area of business focus: process and task automation and optimization, which utilizes his expertise in AI, process engineering and supply chain management. He and his team are analyzing the forecasting processes in Amazon’s devices group, identifying opportunities for improvement.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

“Amazon is one of the fastest-moving companies I have ever seen,” he says. “Everything is about providing the best possible service to customers, and innovation is happening so quickly here that processes designed as recently as six months ago may no longer be optimal.”

This is one of his research passions: machine-assisted cognition, also known as intelligence augmentation with artificial intelligence.

“Computers are already our assistants today, of course. I want to take these computing technologies to a more advanced level, using machine learning to, for example, train computers to teach themselves to provide me with what I need to know to make better business decisions,” Demirkan explains. “By making processes more automated, efficient, and error proof, we humans have time to do more value-added tasks.”

Breaking research silos

Demirkan said he expects his team to grow in the next six months. “I have applied scientists, research scientists, and data scientists. It’s one of many fast-growing teams at Amazon,” he says.

Demirkan’s transdisciplinary expertise — that combination of deep research knowledge and broad applications experience — is something he will be infusing into his team’s culture. Many education systems, he argues, with their tendencies to silo students in particular domains of expertise, are producing a generation of people who can find it hard to adapt to the wider commercial world.

Related content
Belinda Zeng, head of applied science and engineering at Amazon Search Science and AI, shares her perspective.

“With the digital transformation of companies in every industry, the coming generations of employees need to be more ‘T-shaped’ — innovators with not only a depth of expertise but also a broad, integrated understanding of other disciplines, such as management, engineering, and social sciences,” he says.

Last year, Demirkan’s insights into the changing nature of the high-tech workplace were sought by the US Department of Labor, Employment and Training Administration, when he was invited as an occupation expert to provide guidance on the definition of the occupation Operations Research Analysts.

“This role is about the combination of operations management, IT, data science, and machine learning — a very multidisciplinary, new occupation,” says Demirkan. “I'm hoping that in the future, academia will have more programs geared to preparing people for these crucial kinds of roles.”

With new roles in mind, how has Demirkan enjoyed his work with Amazon?

“A friend of mine said to me: ‘Haluk, you are going 35 miles an hour in academia, and now you are switching to 200 miles an hour?!’,” he says. “I love being a professor and making a difference in students’ lives, but I am relishing being back in industry because in 19 years, things have changed. I’m absorbing so much, and I can take this updated knowledge back to my classes when I teach on the weekend.”

From his professional perspective, Demirkan sees more clearly than most the gaps between academic education and the expectations of professional workplaces. “Globally, we have an ongoing mismatch problem. With my experience with Amazon, I can do my bit to close this gap,” he says.

Giving back

Doing his bit is central to Demirkan’s ethos. When Covid-19 struck in 2020, and hospitals all over the planet were suddenly critically overloaded, Demirkan was contacted by Virginia Mason Franciscan Health, one of the largest healthcare service and hospital providers in Washington state. They wanted his help to optimize their hospital bed allocations, among other things.

“We met online every week, trying to predict demand and capacity, which patients to move to other hospital facilities, looking at doctors’ and nurses’ scheduling — everything.” The urgency of the situation meant Demirkan was more than a volunteer advisor. “I was writing machine learning scripts, literally writing the code myself, to exploit the data quickly being gathered by the hospitals. I was proud to be involved in that work, because it was the first time I was able to make that sort of critical difference in people's lives.”

Related content
While these systems look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

In terms of making a difference at Amazon, Demirkan says: “My goal is to build an ecosystem in which technology is doing the labor-intensive tasks, freeing my team to do more smart work and value-added tasks. That's my idea of success.” That, and taking Amazon’s device-sales forecasting to a whole new level. “I want my team forecasting at a comprehensive, granular level,” says Demirkan. “I want to say with unprecedented accuracy that in this location, this device — in this color, size, and detail — will sell x units on this day.”

But Demirkan also sees additional potential in developing approaches that go beyond traditional forecasting. “I want to develop machine learning and data analytics that can discern what it is that customers really want and expect from Amazon devices; to generate insights powerful enough to actually impact the design decisions for brand new products and services.”

Research areas

Related content

US, VA, Arlington
Are you looking to work at the forefront of Machine Learning (ML) and Artificial Intelligence (AI)? Would you be excited to apply AI algorithms to solve real world problems with significant impact? The Amazon Web Services Professional Services (ProServe) team is seeking a skilled Senior Data Scientist to help customers implement AI/ML solutions and realize transformational business opportunities. This is a team of scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of AI. The team helps customers imagine and scope the use cases that will create the greatest value for their businesses, select and train and fine-tune the right models, define paths to navigate technical or business challenges, develop scalable solutions and applications, and launch them in production. The team provides guidance and implements best practices for applying AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Data Scientists capable of using AI/ML and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. Key job responsibilities As an experienced Senior Data Scientist, you will be responsible for: 1. Lead end-to-end AI/ML and GenAI projects, from understanding business needs to data preparation, model development, solution deployment, and post-production monitoring 2. Collaborate with AI/ML scientists, engineers, and architects to research, design, develop, and evaluate AI algorithms and build ML systems and operations (MLOps) using AWS services to address real-world challenges 3. Interact with customers directly to understand the business challenges, deliver briefing and deep dive sessions to customers and guide them on adoption patterns and paths to production 4. Create and deliver best practice recommendations, tutorials, blog posts, publications, sample code, and presentations tailored to technical, business, and executive stakeholders 5. Provide customer and market feedback to product and engineering teams to help define product direction This is a customer-facing role with potential travel to customer sites as needed. About the team ABOUT AWS: Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
AU, VIC, Melbourne
We are scaling an advanced team of talented Machine Learning Scientists in Melbourne. This is your chance to join our a wider international community of ML experts changing the way our customers experience Amazon. Amazon's International Machine Learning team partners with businesses across the diverse Amazon ecosystem to drive innovation and deliver exceptional experiences for customers around the globe. Our team works on a wide variety of high-impact projects that deliver innovation at global scale, leveraging unrivalled access to the latest technology, whilst actively contributing to the research community by publishing in top machine learning conferences. As part of Amazon's Research and Development organization, you will have the opportunity to push the boundaries of applied science and deploy solutions that directly benefit millions of Amazon customers worldwide. Whether you are exploring the frontiers of generative AI, developing next-generation recommender systems, or optimizing agentic workflows, your work at Amazon has the power to truly change the world. Join us in this exciting journey as we redefine the present and the future of innovative applied science. Key job responsibilities - You will take on complex problems, work on solutions that either leverage or extend existing academic and industrial research, and utilize your own out-of-the-box pragmatic thinking. - In addition to coming up with novel solutions and building prototypes, you will deliver these to production in customer facing applications, in partnership with product and development teams. - You will publish papers internally and externally, contributing to advancing knowledge in the field of applied machine learning and generative AI. About the team Our team is composed of scientists with PhDs, with a strong publication profile and an appetite to see the impact of innovation on real-world systems at scale.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next-level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Key job responsibilities * Partner with laboratory science teams on design and analysis of experiments * Originate and lead the development of new data collection workflows with cross-functional partners * Develop and deploy scalable bioinformatics analysis and QC workflows * Evaluate and incorporate novel bioinformatic approaches to solve critical business problems About the team Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel sensing and actuation technologies for dexterous manipulation - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, MA, North Reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of systems that: • Enables unprecedented generalization across diverse tasks • Enables contact-rich manipulation in different environments • Seamlessly integrates mobility and manipulation • Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration!
US, WA, Seattle
We are a passionate team applying the latest advances in technology to solve real-world challenges. As a Data Scientist working at the intersection of machine learning and advanced analytics, you will help develop innovative products that enhance customer experiences. Our team values intellectual curiosity while maintaining sharp focus on bringing products to market. Successful candidates demonstrate responsiveness, adaptability, and thrive in our open, collaborative, entrepreneurial environment. Working at the forefront of both academic and applied research, you will join a diverse team of scientists, engineers, and product managers to solve complex business and technology problems using scientific approaches. You will collaborate closely with other teams to implement innovative solutions and drive improvements. At Amazon, we cultivate an inclusive culture through our Leadership Principles, which emphasize seeking diverse perspectives, continuous learning, and building trust. Our global community includes thirteen employee-led affinity groups with 40,000 members across 190 chapters, showcasing our commitment to embracing differences and fostering continuous learning through local, regional, and global programs. We prioritize work-life balance, recognizing it as fundamental to long-term happiness and fulfillment. Our team is committed to supporting your career development through challenging projects, mentorship opportunities, and targeted training programs that help you reach your full potential. Key job responsibilities Key job responsibilities * Deliver data analyses that optimize overall team process and guide decision-making * Deep dive to understand source of anomalies across a variety of datasets including low-level sequencing read data * Identify key metrics that are drivers to achieve team goals; work with senior stakeholders to refine your results * Use modern statistical methods to highlight insights for predictive & generative ML models and assay process * Perform correlation analysis, significance testing, and simulation on high- and low-fidelity datasets for various types of readouts * Generate reports with tables and visualization that support operational cycle analysis and one-off POC experiments * Collaborate with multi-disciplinary domain experts to support your findings and their experiments * Write well-tested scripts that can be promoted by our software teams to production pipelines * Learn about new statistical methods for our domain and adopt them in your work * Work fluently in SQL and Python. Be skilled in generating compelling visualizations. A day in the life New data has just landed and promoted to our datalake. You load the data and verify it's overall integrity by visualizing variation across target subsets. You realize we may have made progress toward our goals and begin to test the validity of your nominal results. At midday you grab lunch with new coworkers and learn about their fields or weird interests (there are many). You generate visualizations for the entire dataset and perform significance tests that reinforce specific findings. You meet with peers in the afternoon to discuss your findings and breakdown the remaining tasks to finalize your group report! About the team Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you.
IN, KA, Bengaluru
Amazon is looking for a passionate, talented, and inventive Scientist with a strong machine learning background to help build industry-leading Speech and Language technology. Our mission is to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. As a Speech and Language Scientist, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. We are hiring in the area of speech and audio understanding technologies including ASR.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.