A head and shoulders profile photo of Haluk Demirkan, senior manager of Devices Demand Science
Haluk Demirkan, senior manager of Devices Demand Science, says his goal at Amazon "is to build an ecosystem in which technology is doing the labor-intensive tasks, freeing my team to do more smart work and value-added tasks."

How Haluk Demirkan is using ML-powered forecasts to get the right devices to the right place at the right time

Part-time sabbatical plan turns into full-time role for author of five books and more than 170 research articles.

For years, Amazon has been at the forefront of machine learning and data science. At the same time, the company has pioneered the large-scale automation of processes at all levels of its supply chains. But in its fast-moving commercial world, the constant challenge is to integrate these complementary fields to create processes that optimize the delivery of customer value.

Related content
A combination of audio and visual signals guide the device’s movement, so the screen is always in view.

In 2021, Haluk Demirkan joined Amazon to boost the company’s efforts for that kind of integration. As the senior manager of Devices Demand Science, Demirkan is building and leading a team dedicated to using cutting-edge data analytics, machine learning, and process optimization — among other techniques — to transform sales predictions for Amazon devices, from the Kindle, the Echo family of devices, and Fire Tablets, to Fire TVs, and Ring Video Doorbell — an enormously important task.

To understand why the company’s Devices organization is excited about Demirkan’s arrival, a little background is required. Demirkan first came to the US from Turkey in 1991 on a three-month language course to improve his English. Three decades later, he hasn’t left. Instead, he has built a pioneering transdisciplinary career at the intersection of data science, service science, smart machines, and industry.

Bridging industry and academia

He earned a master’s in industrial and systems engineering and in 2002 completed a dual-degree PhD in information systems and operations management at the University of Florida. He gained these qualifications while simultaneously working full-time for AT&T Bell Labs (as it was then known) and Citibank in data analytics, process engineering, and price and supply chain optimization.

By the time he earned his PhD, Demirkan had already spent 11 years in industry, so in 2002 he decided to give full-time academia a try. He joined Arizona State University as an assistant professor, primarily teaching information systems, analytics and supply chain management. While at ASU, Demirkan co-edited two seminal research books in the emerging fields of service science and systems, and its industry-based implementation.

Related content
The collaboration will focus on advancing innovation in core robotics and AI technologies and their applications.

In 2013, he moved to the University of Washington-Tacoma as an associate professor of service innovation and business analytics, tasked with expanding research and education programs in business analytics. He eventually became founding director of the Milgard School’s Center for Business Analytics and Master of Science Business Analytics, and the founding assistant dean of the Analytics Innovations Hub.

So far, he has published five books and more than 170 research articles. In 2021, Demirkan’s work and community building were recognized by the university with an award for both Distinguished Research and Community Engagement.

Throughout this academic stretch of his career, Demirkan maintained strong links with industry, developing data science, engineering and smart analytics solutions for dozens of leading companies, including IBM, GE, Cisco, HP, Intel, Bank of America, and Mayo Clinic. With AWS Academy Educator Accreditation, he still teaches a data analytics course at the University of Washington-Tacoma on weekends, guiding his students in developing AI and data-analytics-based solutions to novel business problems.

Researching “big problems”

So how did he end up full-time at Amazon?

“I’d come close to one of the highest positions in the academic career path,” says Demirkan. “The next step would have been to become a dean somewhere. But I didn’t want to be dean for near term: I prefer working on research for big problems.”

So, after almost two decades in academia, he decided to take a sabbatical. However, his restless nature meant he couldn’t be idle, so Demirkan applied to become an Amazon Scholar, a flexible program designed for academics who want to tackle large-scale technical challenges.

His plan: work one day a week during his sabbatical. During the interview with Amazon, however, it became clear that some of Amazon’s big business challenges dovetailed with Demirkan’s skillset so strongly — and offered him the opportunity to make such a big impact — that he decided to join the company full time by taking a leave from UW.

“My wife was like, ‘This is not a sabbatical!’”, recalls Demirkan.

The power of demand prediction

In his new Seattle-based role, Demirkan has two primary areas of business focus. The first is in making sales demand predictions for most Amazon devices. His team produces sales predictions for the majority of device types, globally, in which Amazon has a presence, and for every day from now until a year in the future.

To do this, Demirkan’s team ingests device sales data to train machine learning algorithms to generate increasingly accurate sales forecasts. Specifically, the team is employing advanced time-series forecasting methods, such as Random Forest, XGBoost, and Ridge Regression.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

“Based on that predicted demand, another Amazon team ships just the right amount of product to the right locations, so it’s where it needs to be just as a customer chooses to make that purchase,” says Demirkan. “Basically, our goal is to get the right amount of devices to the right place at the right time to better meet our customers’ needs. That's our goal.”

The forecasts Demirkan’s team creates do more than mere prediction. The team can also, for example, make projections for sales based on varying promotional prices.

“How many customers in London are going to buy a Kindle on April 21, if the price is x? The forecast assists our executive management teams to make decisions around how many units to manufacture, how many to ship, and when to ship,” says Demirkan.

By providing the company’s supply chain with increasingly accurate demand forecasts, Amazon simultaneously reduces delivery times and supply chain costs, helping the company keep prices low, while increasing customer responsiveness.

Demirkan is also developing a comprehensive, science-driven forecasting model called “Intelligent Demand Plan”. It will combine a wider range of inputs, including product cannibalization, macro-economic factors, traffic, social media and lots more, to sense demand and customer preferences with greater nuance, and to gain early insight into emerging market trends.

Automation and optimization

Demirkan’s second area of business focus: process and task automation and optimization, which utilizes his expertise in AI, process engineering and supply chain management. He and his team are analyzing the forecasting processes in Amazon’s devices group, identifying opportunities for improvement.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

“Amazon is one of the fastest-moving companies I have ever seen,” he says. “Everything is about providing the best possible service to customers, and innovation is happening so quickly here that processes designed as recently as six months ago may no longer be optimal.”

This is one of his research passions: machine-assisted cognition, also known as intelligence augmentation with artificial intelligence.

“Computers are already our assistants today, of course. I want to take these computing technologies to a more advanced level, using machine learning to, for example, train computers to teach themselves to provide me with what I need to know to make better business decisions,” Demirkan explains. “By making processes more automated, efficient, and error proof, we humans have time to do more value-added tasks.”

Breaking research silos

Demirkan said he expects his team to grow in the next six months. “I have applied scientists, research scientists, and data scientists. It’s one of many fast-growing teams at Amazon,” he says.

Demirkan’s transdisciplinary expertise — that combination of deep research knowledge and broad applications experience — is something he will be infusing into his team’s culture. Many education systems, he argues, with their tendencies to silo students in particular domains of expertise, are producing a generation of people who can find it hard to adapt to the wider commercial world.

Related content
Belinda Zeng, head of applied science and engineering at Amazon Search Science and AI, shares her perspective.

“With the digital transformation of companies in every industry, the coming generations of employees need to be more ‘T-shaped’ — innovators with not only a depth of expertise but also a broad, integrated understanding of other disciplines, such as management, engineering, and social sciences,” he says.

Last year, Demirkan’s insights into the changing nature of the high-tech workplace were sought by the US Department of Labor, Employment and Training Administration, when he was invited as an occupation expert to provide guidance on the definition of the occupation Operations Research Analysts.

“This role is about the combination of operations management, IT, data science, and machine learning — a very multidisciplinary, new occupation,” says Demirkan. “I'm hoping that in the future, academia will have more programs geared to preparing people for these crucial kinds of roles.”

With new roles in mind, how has Demirkan enjoyed his work with Amazon?

“A friend of mine said to me: ‘Haluk, you are going 35 miles an hour in academia, and now you are switching to 200 miles an hour?!’,” he says. “I love being a professor and making a difference in students’ lives, but I am relishing being back in industry because in 19 years, things have changed. I’m absorbing so much, and I can take this updated knowledge back to my classes when I teach on the weekend.”

From his professional perspective, Demirkan sees more clearly than most the gaps between academic education and the expectations of professional workplaces. “Globally, we have an ongoing mismatch problem. With my experience with Amazon, I can do my bit to close this gap,” he says.

Giving back

Doing his bit is central to Demirkan’s ethos. When Covid-19 struck in 2020, and hospitals all over the planet were suddenly critically overloaded, Demirkan was contacted by Virginia Mason Franciscan Health, one of the largest healthcare service and hospital providers in Washington state. They wanted his help to optimize their hospital bed allocations, among other things.

“We met online every week, trying to predict demand and capacity, which patients to move to other hospital facilities, looking at doctors’ and nurses’ scheduling — everything.” The urgency of the situation meant Demirkan was more than a volunteer advisor. “I was writing machine learning scripts, literally writing the code myself, to exploit the data quickly being gathered by the hospitals. I was proud to be involved in that work, because it was the first time I was able to make that sort of critical difference in people's lives.”

Related content
While these systems look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

In terms of making a difference at Amazon, Demirkan says: “My goal is to build an ecosystem in which technology is doing the labor-intensive tasks, freeing my team to do more smart work and value-added tasks. That's my idea of success.” That, and taking Amazon’s device-sales forecasting to a whole new level. “I want my team forecasting at a comprehensive, granular level,” says Demirkan. “I want to say with unprecedented accuracy that in this location, this device — in this color, size, and detail — will sell x units on this day.”

But Demirkan also sees additional potential in developing approaches that go beyond traditional forecasting. “I want to develop machine learning and data analytics that can discern what it is that customers really want and expect from Amazon devices; to generate insights powerful enough to actually impact the design decisions for brand new products and services.”

Research areas

Related content

US, VA, Arlington
Amazon’s mission is to be the most customer centric company in the world. The Workforce Staffing (WFS) organization is on the front line of that mission by hiring the hourly fulfillment associates who make that mission a reality. To drive the necessary growth and continued scale of Amazon’s associate needs within a constrained employment environment, Amazon has created the Workforce Intelligence (WFI) team. This team will (re)invent how Amazon attracts, communicates with, and ultimately hires its hourly associates. This team owns multi-layered research and program implementation to drive deep learning, process improvements, and strategic recommendations to global leadership. Are you passionate about data? Do you enjoy questioning the status quo? Do complex and difficult challenges excite you? If yes, this may be the team for you. The Data Scientist will be responsible for creating cutting edge algorithms, predictive and prescriptive models as well as required data models to facilitate WFS at-scale warehouse associate hiring. This role acts as an internal consultant to the marketing, biz ops and candidate experience teams covering responsibilities such as at-scale hiring process improvement, analyzing large scale candidate/associate data and being strategic to providing best candidate hiring experience to WFS warehouse associate candidates. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, CA, Sunnyvale
At Amazon Fashion, we are obsessed with making Amazon Fashion the most loved fashion destinations globally. We're searching for Computer Vision pioneers who are passionate about technology, innovation, and customer experience, and who are enthusiastic about making a lasting impact on the industry. You'll be working with talented scientists, engineers, and product managers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey and change the world of eCommerce forever Key job responsibilities As a Applied Scientist, you will be at the forefront to define, own and drive the science that span multiple machine learning models and enabling multiple product/engineering teams and organizations. You will partner with product management and technical leadership to identify opportunities to innovate customer facing experiences. You will identify new areas of investment and work to align product roadmaps to deliver on these opportunities. As a science leader, you will not only develop unique scientific solutions, but more importantly influence strategy and outcomes across different Amazon organizations such as Search, Personalization and more. This role is inherently cross-functional and requires a strong ability to communicate, influence and earn the trust of software engineers, technical and business leadership. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problem in the Amazon scale? Are you excited by developing and productizing machine learning, deep learning algorithms and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring Applied Scientist who has a solid background in applied Machine Learning and a proven record of solving customer-facing problems via scalable ML solutions, and is motivated to grow professionally as an ML scientist. Key job responsibilities - Tackle ambiguous problems in Machine Learning and drive full life-cycle Machine Learning projects. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production. - Run A/B experiments, gather data, and perform statistical tests. - Establish scalable, efficient, automated processes for large-scale data mining, machine-learning model development, model validation and serving. - Work closely with software engineers and product managers to assist in productizing your ML models. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, WA, Bellevue
Have you ever wondered how Amazon predicts when your order will arrive and how we ensure that it actually arrives on at the promised date/time? Have you wondered where all those Amazon semi-trucks on the road are headed? Are you passionate about increasing efficiency and reducing carbon footprint? Does the idea of having worldwide impact on Amazon's logistics network including our planes, trucks, and vans sound exciting to you? If so, then we want to talk with you! The Network Planning and Fulfillment Execution team owns and operates OR/ML and simulation systems that continually optimize the distribution of tens of millions of products across Amazon’s warehouses in the most cost-effective manner, utilizing large scale optimization techniques and distributed computing in trying to reduce overall transportation costs while improving the customer experience. We are focused on saving hundreds of millions of dollars using big data technologies, cutting edge science, machine learning, and scalable distributed software on the cloud that automates and optimizes inventory and shipments to customers under the uncertainty of demand, pricing and supply. We’re looking for a passionate, results-oriented, and inventive Research Scientist who can create and improve OR/ML models for our outbound transportation planning systems. In addition, you will be working on design, development and evaluation of highly innovative OR and ML models for solving complex business problems in the area of outbound transportation planning systems. More specifically, you will be developing a Mathematical Optimization model towards short term Origin-Destination flows that are inventory aware and adhere to facility capacities given destination demand. This will also require you to build machine learning models to predict inventory N weeks out (N<13 Weeks) and ML models to calibrate inventory bounds and math model errors. You will work closely with our product managers and software engineers to disambiguate complex supply chain problems and create ML solutions to solve those problems at scale. You will directly impact our direct customers, and even play with big data and incredible scale in the background. Watch http://bit.ly/amazon-scot to get the big picture. Key job responsibilities As part of your daily work you will: * Design, development and evaluation of highly innovative OR/ML models for solving complex business problems. * Analyze and extract relevant information from large amounts of data to help automate and optimize key processes. * Research and apply the latest ML techniques and best practices from both academia and industry. * Think about customers and how to improve the customer delivery experience. * Use and analytical techniques to create scalable solutions for business problems. * Work closely with data & software engineering teams to build model implementations and integrate successful models and algorithms in production systems at very large scale. * Technically lead and mentor other scientists in team. * Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. A day in the life This is a great role for someone who likes to learn new things. You will have the opportunity to learn all about how Amazon plans for and executes within it's logistics network including Fulfillment Centers, Sort Centers, Delivery Stations, and more. In this role, you will be a design and develop Optimization and Machine Learning models with significant scope, impact, and high visibility. Your solutions will impact business segments worth many-billions-of-dollars and geographies spanning multiple countries and markets. From day one, you will be working with bar raising scientists, engineers, and designers. You will also collaborate with the broader science community in Amazon to broaden the horizon of your work. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. We look for individuals who know how to deliver results and show a desire to develop themselves, their colleagues, and their career. About the team Network Planning and Fulfillment Execution Science team contains a group of scientists with different technical backgrounds including Machine Learning and Operations Research, who will collaborate closely with you on your projects. Our team directly supports multiple functional areas across Fulfillment Optimization and the research needs of the corresponding product and engineering teams. We tackle some of the most mathematically complex challenges in facility and transportation planning to improve Amazon's operational efficiency worldwide and at a scale that is unique to Amazon. We often seek the opportunity of applying hybrid techniques in the space of Operations Research and Machine Learning to tackle some of our biggest technical challenges. We disambiguate complex supply chain problems and create ML and optimization solutions to solve those problems at scale. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Sunnyvale
Are you passionate about solving unique customer-facing problems in the Amazon scale? Are you excited about utilizing statistical analysis, machine learning, data mining and leverage tons of Amazon data to learn and infer customer shopping patterns? Do you enjoy working with a diversity of engineers, machine learning scientists, product managers and user-experience designers? If so, you have found the right match! Fashion is extremely fast-moving, visual, subjective, and it presents numerous unique problem domains such as product recommendations, product discovery and evaluation. The vision for Amazon Fashion is to make Amazon the number one online shopping destination for Fashion customers by providing large selections, inspiring and accurate recommendations and customer experience. The mission of Fit science team as part of Fashion Tech is to innovate and develop scalable ML solutions to provide personalized fit and size recommendation when Amazon Fashion customers evaluate apparels or shoes online. The team is hiring a Data Scientist who has a solid background in Statistical Analysis, Machine Learning and Data Mining and a proven record of effectively analyzing large complex heterogeneous datasets, and is motivated to grow professionally as a Data Scientist. Key job responsibilities - You will work on our Science team and partner closely with applied scientists, data engineers as well as product managers, UX designers, and business partners to answer complex problems via data analysis. Outputs from your analysis will directly help improve the performance of the ML based recommendation systems thereby enhancing the customer experience as well as inform the roadmap for science and the product. - You can effectively analyze complex and disparate datasets collected from diverse sources to derive key insights. - You have excellent communication skills to be able to work with cross-functional team members to understand key questions and earn the trust of senior leaders. - You are able to multi-task between different tasks such as gap analysis of algorithm results, integrating multiple disparate datasets, doing business intelligence, analyzing engagement metrics or presenting to stakeholders. - You thrive in an agile and fast-paced environment on highly visible projects and initiatives. We are open to hiring candidates to work out of one of the following locations: Sunnyvale, CA, USA
US, WA, Seattle
Amazon is continuing to invest in its Advertising business to tap into the growing online advertising market. The Publisher Technologies team builds and operates extensible services that empower 1P Publishers to improve the monetization of their customer experiences, along with the experiences themselves. We bias toward standards-based and flexible designs that allow Publishers the ability to invent on top of our solutions and to interoperate well with other advertising technology providers; both internal and external. The Publisher Technology Data, Insights, and Analytics team enables faster data-driven decision making for Publishers and Monetization teams by providing them with near real time data, data management tools, actionable insights, and an easy-to-use reporting experience. Our data products provide Publishers and Monetization teams with the capabilities necessary to better understand the performance of their Advertising products along with supporting machine learning at scale. In this role, you will join a team whose data products and services empower hundreds of teams across Amazon with near real time data to support big data analytics, insights, and machine learning at scale. You will collaborate with cross-functional teams to design, develop, and implement advanced data tools, predictive models, and machine learning algorithms to support Advertising strategies and optimize revenue streams. You will analyze large-scale data to identify patterns and trends, and design and run A/B experiments to improve Publisher and advertiser experiences. Key job responsibilities - Design and lead large projects and experiments from beginning to end, and drive solutions to complex or ambiguous problems - Create tools and solve challenges using statistical modeling, machine learning, optimization, and/or other approaches for quantifiable impact on the business - Use broad expertise to recommend the right strategies, methodologies, and best practices, teaching and mentoring others - Key influencer of your team’s business strategy and of related teams’ strategies - Communication and documentation of methodologies, insights, and recommendations for senior leaders with various levels of technical knowledge We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. We are a team of doers working passionately to apply cutting-edge advances in technology to solve real-world problems. As an Applied Scientist, you will work with a unique and gifted team developing exciting products for consumers and collaborate with cross-functional teams. Our team rewards intellectual curiosity while maintaining a laser-focus in bringing entirely new products to Amazon. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the cutting edge of both academic and applied research in this product area, you have the opportunity to work together with some of the most talented scientists, engineers, and product managers. Key job responsibilities We are looking for a computational focused candidate with experience predicting, folding, and designing proteins. The candidate can expect to work on a small team working collaboratively with software developers, engineers, and like-minded scientists on a fast paced project. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Amazon is investing heavily in building a world-class advertising business, and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. We deliver billions of ad impressions and millions of clicks daily and break fresh ground to create world-class products. We are highly motivated, collaborative, and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with advertised products with a high relevance bar and strict latency constraints. Sponsored Products Detail Page Blended Widgets team is chartered with building novel product recommendation experiences. We push the innovation frontiers for our hundreds of millions of customers WW to aid product discovery while helping shoppers to find relevant products easily. Our team is building differentiated recommendations that highlight specific characteristics of products (either direct attributes, inferred or machine learned), and leveraging generative AI to provide interactive shopping experiences. We are looking for a Senior Applied Scientist who can delight our customers by continually learning and inventing. Our ideal candidate is an experienced Applied Scientist who has a track-record of performing deep analysis and is passionate about applying advanced ML and statistical techniques to solve real-world, ambiguous and complex challenges to optimize and improve the product performance, and who is motivated to achieve results in a fast-paced environment. The position offers an exceptional opportunity to grow your technical and non-technical skills and make a real difference to the Amazon Advertising business. As a Senior Applied Scientist on this team, you will: * Be the technical leader in Machine Learning; lead efforts within this team and collaborate across teams * Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, perform hands-on analysis and modeling of enormous data sets to develop insights that improve shopper experiences and merchandise sales * Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. * Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. * Research new and innovative machine learning approaches. * Promote the culture of experimentation and applied science at Amazon Team video https://youtu.be/zD_6Lzw8raE We are also open to consider the candidate in Seattle, or Palo Alto. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, VA, Arlington
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. As a core product offering within our advertising portfolio, Sponsored Products (SP) helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The SP team's primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! The Search Sourcing and Relevance team parses billions of ads to surface the best ad to show to Amazon shoppers. The team strives to understand customer intent and identify relevant ads that enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may, at times, be buried deeper in the search results. By showing the right ads to customers at the right time, this team improves the shopper experience, increase advertiser ROI, and improves long-term monetization. This is a talented team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term growth. Key job responsibilities As a Senior Applied Scientist on this team, you will: - Be the technical leader in Machine Learning; lead efforts within this team and across other teams. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. About the team Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA