A head and shoulders profile photo of Haluk Demirkan, senior manager of Devices Demand Science
Haluk Demirkan, senior manager of Devices Demand Science, says his goal at Amazon "is to build an ecosystem in which technology is doing the labor-intensive tasks, freeing my team to do more smart work and value-added tasks."

How Haluk Demirkan is using ML-powered forecasts to get the right devices to the right place at the right time

Part-time sabbatical plan turns into full-time role for author of five books and more than 170 research articles.

For years, Amazon has been at the forefront of machine learning and data science. At the same time, the company has pioneered the large-scale automation of processes at all levels of its supply chains. But in its fast-moving commercial world, the constant challenge is to integrate these complementary fields to create processes that optimize the delivery of customer value.

Related content
A combination of audio and visual signals guide the device’s movement, so the screen is always in view.

In 2021, Haluk Demirkan joined Amazon to boost the company’s efforts for that kind of integration. As the senior manager of Devices Demand Science, Demirkan is building and leading a team dedicated to using cutting-edge data analytics, machine learning, and process optimization — among other techniques — to transform sales predictions for Amazon devices, from the Kindle, the Echo family of devices, and Fire Tablets, to Fire TVs, and Ring Video Doorbell — an enormously important task.

To understand why the company’s Devices organization is excited about Demirkan’s arrival, a little background is required. Demirkan first came to the US from Turkey in 1991 on a three-month language course to improve his English. Three decades later, he hasn’t left. Instead, he has built a pioneering transdisciplinary career at the intersection of data science, service science, smart machines, and industry.

Bridging industry and academia

He earned a master’s in industrial and systems engineering and in 2002 completed a dual-degree PhD in information systems and operations management at the University of Florida. He gained these qualifications while simultaneously working full-time for AT&T Bell Labs (as it was then known) and Citibank in data analytics, process engineering, and price and supply chain optimization.

By the time he earned his PhD, Demirkan had already spent 11 years in industry, so in 2002 he decided to give full-time academia a try. He joined Arizona State University as an assistant professor, primarily teaching information systems, analytics and supply chain management. While at ASU, Demirkan co-edited two seminal research books in the emerging fields of service science and systems, and its industry-based implementation.

Related content
The collaboration will focus on advancing innovation in core robotics and AI technologies and their applications.

In 2013, he moved to the University of Washington-Tacoma as an associate professor of service innovation and business analytics, tasked with expanding research and education programs in business analytics. He eventually became founding director of the Milgard School’s Center for Business Analytics and Master of Science Business Analytics, and the founding assistant dean of the Analytics Innovations Hub.

So far, he has published five books and more than 170 research articles. In 2021, Demirkan’s work and community building were recognized by the university with an award for both Distinguished Research and Community Engagement.

Throughout this academic stretch of his career, Demirkan maintained strong links with industry, developing data science, engineering and smart analytics solutions for dozens of leading companies, including IBM, GE, Cisco, HP, Intel, Bank of America, and Mayo Clinic. With AWS Academy Educator Accreditation, he still teaches a data analytics course at the University of Washington-Tacoma on weekends, guiding his students in developing AI and data-analytics-based solutions to novel business problems.

Researching “big problems”

So how did he end up full-time at Amazon?

“I’d come close to one of the highest positions in the academic career path,” says Demirkan. “The next step would have been to become a dean somewhere. But I didn’t want to be dean for near term: I prefer working on research for big problems.”

So, after almost two decades in academia, he decided to take a sabbatical. However, his restless nature meant he couldn’t be idle, so Demirkan applied to become an Amazon Scholar, a flexible program designed for academics who want to tackle large-scale technical challenges.

His plan: work one day a week during his sabbatical. During the interview with Amazon, however, it became clear that some of Amazon’s big business challenges dovetailed with Demirkan’s skillset so strongly — and offered him the opportunity to make such a big impact — that he decided to join the company full time by taking a leave from UW.

“My wife was like, ‘This is not a sabbatical!’”, recalls Demirkan.

The power of demand prediction

In his new Seattle-based role, Demirkan has two primary areas of business focus. The first is in making sales demand predictions for most Amazon devices. His team produces sales predictions for the majority of device types, globally, in which Amazon has a presence, and for every day from now until a year in the future.

To do this, Demirkan’s team ingests device sales data to train machine learning algorithms to generate increasingly accurate sales forecasts. Specifically, the team is employing advanced time-series forecasting methods, such as Random Forest, XGBoost, and Ridge Regression.

Related content
The story of a decade-plus long journey toward a unified forecasting model.

“Based on that predicted demand, another Amazon team ships just the right amount of product to the right locations, so it’s where it needs to be just as a customer chooses to make that purchase,” says Demirkan. “Basically, our goal is to get the right amount of devices to the right place at the right time to better meet our customers’ needs. That's our goal.”

The forecasts Demirkan’s team creates do more than mere prediction. The team can also, for example, make projections for sales based on varying promotional prices.

“How many customers in London are going to buy a Kindle on April 21, if the price is x? The forecast assists our executive management teams to make decisions around how many units to manufacture, how many to ship, and when to ship,” says Demirkan.

By providing the company’s supply chain with increasingly accurate demand forecasts, Amazon simultaneously reduces delivery times and supply chain costs, helping the company keep prices low, while increasing customer responsiveness.

Demirkan is also developing a comprehensive, science-driven forecasting model called “Intelligent Demand Plan”. It will combine a wider range of inputs, including product cannibalization, macro-economic factors, traffic, social media and lots more, to sense demand and customer preferences with greater nuance, and to gain early insight into emerging market trends.

Automation and optimization

Demirkan’s second area of business focus: process and task automation and optimization, which utilizes his expertise in AI, process engineering and supply chain management. He and his team are analyzing the forecasting processes in Amazon’s devices group, identifying opportunities for improvement.

Related content
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

“Amazon is one of the fastest-moving companies I have ever seen,” he says. “Everything is about providing the best possible service to customers, and innovation is happening so quickly here that processes designed as recently as six months ago may no longer be optimal.”

This is one of his research passions: machine-assisted cognition, also known as intelligence augmentation with artificial intelligence.

“Computers are already our assistants today, of course. I want to take these computing technologies to a more advanced level, using machine learning to, for example, train computers to teach themselves to provide me with what I need to know to make better business decisions,” Demirkan explains. “By making processes more automated, efficient, and error proof, we humans have time to do more value-added tasks.”

Breaking research silos

Demirkan said he expects his team to grow in the next six months. “I have applied scientists, research scientists, and data scientists. It’s one of many fast-growing teams at Amazon,” he says.

Demirkan’s transdisciplinary expertise — that combination of deep research knowledge and broad applications experience — is something he will be infusing into his team’s culture. Many education systems, he argues, with their tendencies to silo students in particular domains of expertise, are producing a generation of people who can find it hard to adapt to the wider commercial world.

Related content
Belinda Zeng, head of applied science and engineering at Amazon Search Science and AI, shares her perspective.

“With the digital transformation of companies in every industry, the coming generations of employees need to be more ‘T-shaped’ — innovators with not only a depth of expertise but also a broad, integrated understanding of other disciplines, such as management, engineering, and social sciences,” he says.

Last year, Demirkan’s insights into the changing nature of the high-tech workplace were sought by the US Department of Labor, Employment and Training Administration, when he was invited as an occupation expert to provide guidance on the definition of the occupation Operations Research Analysts.

“This role is about the combination of operations management, IT, data science, and machine learning — a very multidisciplinary, new occupation,” says Demirkan. “I'm hoping that in the future, academia will have more programs geared to preparing people for these crucial kinds of roles.”

With new roles in mind, how has Demirkan enjoyed his work with Amazon?

“A friend of mine said to me: ‘Haluk, you are going 35 miles an hour in academia, and now you are switching to 200 miles an hour?!’,” he says. “I love being a professor and making a difference in students’ lives, but I am relishing being back in industry because in 19 years, things have changed. I’m absorbing so much, and I can take this updated knowledge back to my classes when I teach on the weekend.”

From his professional perspective, Demirkan sees more clearly than most the gaps between academic education and the expectations of professional workplaces. “Globally, we have an ongoing mismatch problem. With my experience with Amazon, I can do my bit to close this gap,” he says.

Giving back

Doing his bit is central to Demirkan’s ethos. When Covid-19 struck in 2020, and hospitals all over the planet were suddenly critically overloaded, Demirkan was contacted by Virginia Mason Franciscan Health, one of the largest healthcare service and hospital providers in Washington state. They wanted his help to optimize their hospital bed allocations, among other things.

“We met online every week, trying to predict demand and capacity, which patients to move to other hospital facilities, looking at doctors’ and nurses’ scheduling — everything.” The urgency of the situation meant Demirkan was more than a volunteer advisor. “I was writing machine learning scripts, literally writing the code myself, to exploit the data quickly being gathered by the hospitals. I was proud to be involved in that work, because it was the first time I was able to make that sort of critical difference in people's lives.”

Related content
While these systems look like other robot arms, they embed advanced technologies that will shape Amazon's robot fleet for years to come.

In terms of making a difference at Amazon, Demirkan says: “My goal is to build an ecosystem in which technology is doing the labor-intensive tasks, freeing my team to do more smart work and value-added tasks. That's my idea of success.” That, and taking Amazon’s device-sales forecasting to a whole new level. “I want my team forecasting at a comprehensive, granular level,” says Demirkan. “I want to say with unprecedented accuracy that in this location, this device — in this color, size, and detail — will sell x units on this day.”

But Demirkan also sees additional potential in developing approaches that go beyond traditional forecasting. “I want to develop machine learning and data analytics that can discern what it is that customers really want and expect from Amazon devices; to generate insights powerful enough to actually impact the design decisions for brand new products and services.”

Research areas

Related content

US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.