The science of price experiments in the Amazon Store

The requirement that at any given time, all customers see the same prices for the same products necessitates innovation in the design of A/B experiments.

The prices of products in the Amazon Store reflect a range of factors, such as demand, seasonality, and general economic trends. Pricing policies typically involve formulas that take such factors into account; newer pricing policies usually rely on machine learning models.

With the Amazon Pricing Labs, we can conduct a range of online A/B experiments to evaluate new pricing policies. Because we practice nondiscriminatory pricing — all visitors to the Amazon Store at the same time see the same prices for all products — we need to apply experimental treatments to product prices over time, rather than testing different price points simultaneously on different customers. This complicates the experimental design.

Related content
Amazon Scholar David Card on the revolution in economic research that he helped launch and its consequences for industry.

In a paper we published in the Journal of Business Economics in March and presented at the American Economics Association’s annual conference in January (AEA), we described some of the experiments we can conduct to prevent spillovers, improve precision, and control for demand trends and differences in treatment groups when evaluating new pricing policies.

The simplest type of experiment we can perform is a time-bound experiment, in which we apply a treatment to some products in a particular class, while leaving other products in the class untreated, as controls.

Time-bound experiment.png
A time-bound experiment, which begins at day eight, with treatments in red and controls in white.

One potential source of noise in this type of experiment is that an external event — say, a temporary discount on the same product at a different store — can influence treatment effects. If we can define these types of events in advance, we can conduct triggered interventions, in which we time the starts of our treatment and control periods to the occurrence of the events. This can result in staggered start times for experiments on different products.

Triggered interventions.png
The design of a triggered experiment. Red indicates treatment groups, and green indicates control groups. The start of each experiment is triggered by an external event.

If the demand curves for the products are similar enough, and the difference in results between the treatment group and the control group are dramatic enough, time-bound and triggered experiments may be adequate. But for more precise evaluation of a pricing policy, it may be necessary to run treatment and control experiments on the same product, as would be the case with typical A/B testing. That requires a switchback experiment.

Related content
Context vectors that capture “side information” can make experiments more informative.

The most straightforward switchback experiment is the random-days experiments, in which, each day, each product is randomly assigned to either the control group or the treatment group. Our analyses indicate that random days can reduce the standard error of our experimental results — that is, the extent to which the statistics of our observations differ, on average, from the true statistics of the intervention — by 60%.

Random days.png
A random-days experiment. The experiment begins on day 8; red represents treatment, white control.

One of the drawbacks with any switchback experiment, however, is the risk of carryover, in which the effects of a treatment carry over from the treatment phase of the experiment to the control phase. For instance, if treatment increases a product’s sales, recommendation algorithms may recommend that product more often. That could artificially boost the product’s sales even during control periods.

Related content
Pat Bajari, VP and chief economist for Amazon's Core AI group, on his team's new research and what it says about economists' role at Amazon.

We can combat carryover by instituting blackout periods during transitions to treatment and control phases. In a crossover experiment, for instance, we might apply a treatment to some products in a group, leaving the others as controls, but toss out the first week’s data for both groups. Then, after collecting enough data — say, two weeks’ worth — we remove the treatment from the former treatment group and apply it to the former control group. Once again, we throw out the first week’s data, to let the carryover effect die down.

Crossover experiment.png
A crossover experiment, with blackout periods at the beginning of each phase of the experiment. In week 7, the treatment (red) has been applied to products A, D, F, G, and J, but the data is thrown out. In week 10, the first treatment and control groups switch roles, but again, the first week’s data is thrown out.

Crossover experiments can reduce the standard error of our results measurements by 40% to 50%. That’s not quite as good as random days, but carryover effects are mitigated.

Heterogeneous panel treatment effect

The Amazon Pricing Labs also offers two more sophisticated means of evaluating pricing policies. The first of these is the heterogeneous panel treatment effect, or HPTE.

HPTE is a four-step process:

  1. Estimate product-level first difference from detrended data.
  2. Filter outliers.
  3. Estimate second difference from grouped products using causal forest.
  4. Bootstrap data to estimate noise.

Estimate product-level first difference from detrended data. In a standard difference-in-difference (DID) analysis, the first difference is the difference between the results for a single product before and after the experiment begins.

Related content
Amazon Scholar David Card and Amazon academic research consultant Guido Imbens talk about the past and future of empirical economics.

Rather than simply subtracting the results before treatment from the results after treatment, however, we analyze historical trends to predict what would have happened if products were left untreated during the treatment period. We then subtract that prediction from the observed results.

Filter outliers. In pricing experiments, there are frequently unobserved factors that can cause extreme swings in our outcome measurements. We define a cutoff point for outliers as a percentage (quantile) of the results distribution that is inversely proportional to the number of products in the data. This approach has been used previously, but we validated it in simulations.

Estimate second difference from grouped products using causal forest. In DID analysis, the second difference is the difference between the treatment and control groups’ first differences. Because we’re considering groups of heterogeneous products, we calculate the second difference only for products that have strong enough affinities with each other to make the comparison informative. Then we average the second difference across products.

To compute affinity scores, we use a variation on decision trees called causal forests. A typical decision tree is a connected acyclic graph — a tree — each of whose nodes represents a question. In our case, those questions regard product characteristics — say, “Does it require replaceable batteries?”, or “Is its width greater than three inches?”. The answer to the question determines which branch of the tree to follow.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

A causal forest consists of many such trees. The questions are learned from the data, and they define the axes along which the data shows the greatest variance. Consequently, the data used to train the trees requires no labeling.

After training our causal forest, we use it to evaluate the products in our experiment. Products from the treatment and control groups that end up at the same terminal node, or leaf, of a tree are deemed similar enough that their second difference should be calculated.

Bootstrap data to estimate noise. To compute the standard error, we randomly sample products from our dataset and calculate their average treatment effect, then return them to the dataset and randomly sample again. Multiple resampling allows us to compute the variance in our outcome measures.

Spillover effect

At the Amazon Pricing Labs, we have also investigated ways to gauge the spillover effect, which occurs when treatment of one product causes a change in demand for another, similar product. This can throw off our measurements of treatment effect.

For instance, if a new pricing policy increases demand for, say, a particular kitchen chair, more customers will view that chair’s product page. Some fraction of those customers, however, may buy a different chair listed on the page’s “Discover similar items” section.

If the second chair is in the control group, its sales may be artificially inflated by the treatment of the first chair, leading to an underestimation of the treatment effect. If the second chair is in the treatment group, the inflation of its sales may lead to an overestimation of the treatment effect.

To correct for the spillover effect, we need to measure it. The first step in that process is to build a graph of products with correlated demand.

Related content
“Group testing” protocols tailored to particularities of the COVID-19 pandemic promise more-informative test results.

We begin with a list of products that are related to each other according to criteria such as their fine-grained classifications in the Amazon Store catalogue. For each pair of related items, we then look at a year’s worth of data to determine whether a change in the price of one affects demand for another. If those connections are strong enough, we join the products by an edge in our substitutable-items graph.

From the graph, we compute the probability that any given pair of substitutable products will find themselves included in the same experiment and which group, treatment or control, they’ll be assigned to. From those probabilities, we can use an inverse probability-weighting schema to estimate the effect of spillover on our observed outcomes.

Estimating spillover effect, however, is not as good as eliminating it. One way to do that is to treat substitutable products as a single product class and assign them to treatment or control groups en masse. This does reduce the power of our experiments, but it gives our business partners confidence that the results aren’t tainted by spillover.

To determine which products to include in each of our product classes, we use a clustering algorithm that searches the substitutable-product graph for regions of dense interconnection and severs those regions connections to the rest of the graph. In an iterative process, this partitions the graph into clusters of closely related products.

In simulations, we found that this clustering process can reduce spillover bias by 37%.

Research areas

Related content

US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Sr. Applied Scientists with Recommender System or Search Ranking or Ads Ranking experience to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Recommendation/Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation/Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Amazon's Price Perception and Evaluation team is seeking a driven Principal Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to build and scale an advanced self-learning scientific price estimation and product understanding system, regularly generating fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused technical leader with a charter to derive deep neural product relationships, quantify substitution and complementarity effects, and publish trust-preserving probabilistic price ranges on all products listed on Amazon. This role requires an individual with excellent scientific modeling and system design skills, bar-raising business acumen, and an entrepreneurial spirit. We are looking for an experienced leader who is a self-starter comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - Develop the team. Mentor a highly talented group of applied machine learning scientists & researchers. - See the big picture. Shape long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Deliver Impact. Develop, Deploy, and Scale Amazon's next generation foundational price estimation and understanding system
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.