Card-Imbens 16x9.jpg
David Card (left), an Amazon Scholar, a professor of economics at the University of California, Berkeley, and the outgoing president of the AEA, and Guido Imbens (right), an academic research consultant at Amazon and a professor at the Stanford Graduate School of Business.

A conversation with economics Nobelists

Amazon Scholar David Card and academic research consultant Guido Imbens on the past and future of empirical economics.

The annual meeting of the American Economic Association (AEA) took place Jan. 7 - 9, and as it approached, Amazon Science had the chance to interview two of the three recipients of the 2021 Nobel Prize in economics — who also happen to be Amazon-affiliated economists.

David Card, an Amazon Scholar, a professor of economics at the University of California, Berkeley, and the outgoing president of the AEA, won half the prize “for his empirical contributions to labor economics”.

Guido Imbens, an academic research consultant at Amazon and a professor at the Stanford Graduate School of Business, shared the other half of the prize with MIT’s Josh Angrist for “methodological contributions to the analysis of causal relationships”.

Amazon Science: The empirical approach to economics has been recognized by the Nobel Prize committee several times in the last few years, but it wasn't always as popular as it is today. I'm curious how you both first became interested in empirical approaches to economics.

David Card: The heroes of economics for many, many decades were the theorists, and in the postwar era especially, there was a recognition that economic modeling was underdeveloped — the math was underdeveloped — and there was a need to formalize things and understand better what the models really delivered.

People started to realize that we had the data to better look at real labor market phenomena and possibly make economics something different than just a kind of a branch of philosophy.
David Card

That need really proceeded through the ’60s, and Arrow and Debreu were these famous mathematical economists who developed some very elegant theoretical models of how the market works in an idealized economy.

What happened in my time was people started to realize that we had the data to better look at real labor market phenomena and possibly make economics something different than just a kind of a branch of philosophy. Arrow-Debreu is basically mathematical philosophy.

Guido Imbens: I came from a very different tradition. I grew up in the Netherlands, and there was a strong tradition of econometrics started by people like Tinbergen. Tinbergen had been very broad — he did econometrics, but he also did empirical work and was very heavily involved in policy analysis. But over time, the program he had started was becoming much more focused on technical econometrics.

So as an undergraduate, we didn't really do any empirical work. We really just did a lot of mathematical statistics and some operations research and some economic theory. My thesis was a theoretical econometrics study.

When I presented that at Harvard, Josh Angrist wasn't really all that impressed with it, and he actually opposed the department hiring me there because he thought the paper was boring. And he was probably right! But luckily, the more senior people there at the time thought I was at least somewhat promising. And so I got hired at Harvard. But then it was really Josh and Larry Katz, one of the labor economists there, who got me interested in going to the labor seminar and got me exposed to the modern empirical work.

The context Josh and I started talking in really was this paper that I think came up in all three of the Nobel lectures, this paper by Ed Leamer, “Let's Take the Con Out of Econometrics”, where Leamer says, “Hardly anyone takes data analysis seriously. Or perhaps more accurately, hardly anyone takes anyone else’s data analysis seriously.”

And I think Leamer was right: people did these very elaborate things, and it was all showing off complicated technical things, but it wasn't really very credible. In fact, Leamer presented a lecture based on that work at Harvard. And I remember Josh getting up at some point and saying, “Well, you talk about all this old stuff, but look at the work Card does. Look at the work Krueger does. Look at the work I do. It's very different.”

And that felt right to me. It felt that the work was qualitatively very different from the work that Ed Leamer was describing and that he was complaining about.

AS: So that's when you first became aware of Professor Card’s work. Professor Card, when did you first become aware of Professor Imbens’s work?

Card: One of his early papers was pretty interesting. He was trying to combine data from micro survey evidence with benchmark numbers that you would get from a population, and it's actually a version of a kind of a problem that arises at Amazon all the time, which is, we've got noisy estimates of something, and we've got probably reliable estimates of some other aggregates, and there's often ways to try and combine those. I saw that and I thought that was very interesting.

Then there’s the problem that Josh and Guido worked on that was most impactful and that was cited by the Nobel Prize committee. I had worked on an experiment, a real experiment [as opposed to a natural experiment], in welfare analysis in Canada, and it was providing an economic incentive to try and get single mothers off of welfare and into work. And we noticed that the group of mothers who complied or followed on with the experiment was reasonable size, but it wasn't 100%.

We did some analysis of it trying to characterize them. Around the same time, I became aware of Imbens’s and Angrist’s paper, which basically formalized that a lot better and described what exactly was going on with this group. That framework just instantly took off, and everyone within a few years was thinking about problems that way.

This morning I was talking to another Amazon person about a problem. It was a difference analysis. I was saying we should try and characterize the compliers for this difference intervention. So it's exactly this problem.

The Nobel committee’s press release for Card, Imbens, and Angrist’s prize announcement emphasizes their use of natural experiments, which it defines as “situations in which chance events or policy changes result in groups of people being treated differently, in a way that resembles clinical trials in medicine.” A seminal instance of this was Card’s 1993 paper with his Princeton colleague Alan Krueger, which compared fast-food restaurants in two demographically similar communities on either side of the New Jersey-Pennsylvania border, one of which had recently seen a minimum-wage hike and one of which hadn’t.

AS: In the early days, there was skepticism about the empirical approach to economics. So every time you selected a new research project, you weren't just trying to answer an economics problem; you were also, in a sense, establishing the credibility of the approach. How did you select problems then? Was there a structure that you recognized as possibly lending itself to natural experiment?

Card: I think that the natural-experiment thing — there was really a brief period where that was novel, to tell you the truth. Maybe 1989 to 1992 or 3. I did this paper on the Mariel boatlift, which was cited by the committee. But to tell you the truth, that was a very modest paper. I never presented it anywhere, and it's in a very modest journal. So I never thought of that paper as going anywhere [laughs].

What happened was, it became more and more well understood that in order to make a claim of causality even from a natural-experiment setting, you had to have a fair amount of information from before the experiment took place to validate or verify that the group that you were calling the treatment group and the group that you were calling the control group actually were behaving the same.

That was a weakness of the project that Alan Krueger and I did. We had restaurants in New Jersey and Pennsylvania. We knew the minimum wage was going to increase — or we thought we knew that; it wasn't entirely clear at the time — but we surveyed the restaurants before, and then the minimum wage went up, and we surveyed them after, and that was good.

But we didn't really have multiple surveys from before to show that in the absence of the minimum wage, New Jersey and Pennsylvania restaurants had tracked each other for a long time. And these days, that's better understood. At Amazon for instance, people are doing intervention analyses of this type. They would normally look at what they call pre-trend analysis, make sure that the treatment group and the control group are trending the same beforehand.

I think there are 1,000 questions in economics that have been open forever. Sometimes new datasets come along. That's been happening a lot in labor economics: huge administrative datasets have become available, richer and richer, and now we're getting datasets that are created by these tech firms. So my usual thing is, I think, that's a dataset that maybe we can answer this old question on. That’s more my approach.

That's why being at Amazon has been great .... A lot of people have substantive questions they're trying to analyze with data, and they're kind of stuck in places, so there's a need for new methodologies.
Guido Imbens

Imbens: I come from a slightly different perspective. Most of my work has come from listening to people like David and Josh and seeing what type of problems they're working on, what type of methods they're using, and seeing if there's something to be added there — if there’s some way of improving the methods or places where maybe they're stuck, but listening to the people actually doing the empirical work rather than starting with the substantive questions.

That's why being at Amazon has been great, from my perspective. A lot of people have substantive questions they're trying to analyze with data, and they're kind of stuck in places, so there's a need for new methodologies. It's been a very fertile environment for me to come up with new research.

AS: Methodologically, what are some of the outstanding questions that interest you both?

Imbens: Well, one of the things is experimental design in complex environments. A lot of the experimental designs we’re using at the moment still come fairly directly from biomedical settings. We have a population, we randomize them into a treatment group and a control group, and then we compare outcomes for the two groups.

But in a lot of the settings we’re interested in at Amazon, there are very complex interactions between the units and their experiences, and dealing with that is very challenging. There are lots of special cases where we know somewhat what to do, but there are lots of cases where we don't know exactly what to do, and we need to do more complex experiments to get the answers to the questions we're interested in.

Double randomization — original color scheme.jpeg
An example of what Imbens calls “experimental design in complex environments”. In this illustration, each of five viewers is shown promotions for eight different Prime Video shows. Some of those promotions contain extra information, indicated in the image by star ratings (the “treatment”). This design helps determine whether the treatment affects viewing habits (the viewer experiment) but also helps identify spillover effects, in which participation in the viewer experiment influences the viewer’s behavior in other contexts.

The second thing is, we do a lot of these experiments, but often the experiments are relatively small. They’re small in duration, and they’re small in size relative to the overall population. You know, it goes back to the paper we mentioned before, combining this observational-study data with experimental data. That raises a lot of interesting methodological challenges that I spend a lot of time thinking about these days.

AS: I wondered if in the same way that in that early paper you were looking at survey data and population data, there's a way that natural experiments and economic field experiments can reinforce each other or give you a more reliable signal than you can get from either alone.

Card: There's one thing that people do; I've done a few of these myself. It's called meta analysis. It's a technique where you take results from different studies and try and put them into a statistical model. In a way it's comparable to work Guido has done at Amazon, where you take a series of actual experiments, A/B experiments done in Weblab, and basically combine them and say, “Okay, these aren't exactly the same products and the same conditions, but there's enough comparability that maybe I can build a model and use the information from the whole set to help inform what we're learning from any given one.”

And you can do that in studies in economics. For example, I’ve done one on training programs. There are many of these training programs. Each of them — exactly as Guido was saying — is often quite small. And there are weird conditions: sometimes it's only young males or young females that are in the experiment, or they don't have very long follow-up, or sometimes the labor market is really strong, and other times it's really weak. So you can try and build a model of the outcome you get from any given study and then try and see if there are any systematic patterns there.

Imbens: We do all these experiments, but often we kind of do them once, and then we put them aside. There's a lot of information over the years built up in all these experiments we've done, and finding more of these meta-analysis-type ways of combining them and exploiting all the information we have collected there — I think it's a very promising way to go.

AS: How can empirical methods complement theoretical approaches — model building of the kind that, in some sense, the early empirical research was reacting against?

Card: Normally, if you're building a model, there are a few key parameters, like you need to get some kind of an elasticity of what a customer will do if faced with a higher price or if offered a shorter, faster delivery speed versus slower delivery speed. And if you have those elasticities, then you can start building up a model.

If you have even a fairly complicated dynamic model, normally there's a relatively small number of these parameters, and the value of the model is to take this set of parameters and try and tell a bit richer story — not just how the customer responds to an offer of a faster delivery today but how that affects their future purchases and whether they come back and buy other products or whatever. But you need credible estimates of those elasticities. It's not helpful to build a model and then just pull numbers out of the air [laughs]. And that's why A/B experiments are so important at Amazon.

AS: I asked about outstanding methodological questions that you're interested in, but how about economic questions more broadly that you think could really benefit from an empirical approach?

Card: In my field [labor economics], we've begun to realize that different firms are setting different wages for the same kinds of workers. And we're starting to think about two issues related to that. One is, how do workers choose between jobs? Do they know about all the jobs out there? Do they just find out about some of the jobs? We're trying to figure out exactly why it's okay in the labor market for there to be multiple wages for a certain class of workers. Why don't all the workers immediately try to go to one job? This seems to be a very important phenomenon.

And on the other side of that, how do employers think about it? What are the benefits to employers of a higher wage or lower wage? Is it just the recruiting, or is it retention, or is it productivity? Is it longer-term goals? That's front and center in the research that I do outside of Amazon.

AS: I was curious if there were any cases where a problem presented itself, and at first you didn't think there was any way to get an empirical handle on it, and then you figured out that there was.

We're supposed to be social scientists who are trying to see what people are doing and the problems they confront and trying to analyze them. ... That's different than this old-fashioned Adam Smith view of the economy as a perfectly functioning tool that we're just supposed to admire.
David Card

Card: I saw a really interesting paper that was done by a PhD student who was visiting my center at Berkeley. In European football, there are a lot of non-white players, and fan racism is pretty pervasive. This guy noticed that during COVID, they played a lot of games with no fans. So he was able to compare the performance of the non-white and white players in the pre-COVID era and the COVID era, with and without fans, and showed that the non-white players did a little bit better. That's the kind of question where you’re saying, How are we ever going to study that? But if you're thinking and looking around, there's always some angle that might be useful.

Imbens: That's a very clever idea. I agree with David. If you just pay attention, there are a lot of things happening that allow you to answer important questions. Maybe fan insults in sports itself isn't that big a deal, but clearly, racism in the labor market and having people treated differently is a big problem. And here you get a very clear handle on an aspect of it. And once you show it's a problem there, it's very likely that it shows up in arguably substantively much more important settings where it's really hard to study.

In the Netherlands for a long time, they had a limit on the number of students who could go to medical school. And it wasn't decided by the medical schools themselves; they couldn't choose whom to admit. It was partly based on a lottery. At some point, someone used that to figure out how much access to medical school is actually worth. So essentially, you have two people who are both qualified to go to medical school; one gets lucky in the lottery; one doesn't. And it turns out you're giving the person who wins the lottery basically a lot of money. Obviously, in many professions we can't just randomly assign people to different types of jobs. But here you get a handle on the value of rationing that type of education.

Card: I think that's really important. You know, we're supposed to be social scientists who are trying to see what people are doing and the problems they confront and trying to analyze them. In a way, that's different than this sort of old-fashioned Adam Smith view of the economy as a perfectly functioning tool that we're just supposed to admire. That is a difference, I think.

Research areas

Related content

US, WA, Seattle
Job summaryPrime Video is an industry leading, high-growth business and a critical driver of Amazon Prime subscriptions, which contribute to customer loyalty and lifetime value. Prime Video is a digital video streaming and download service that offers Amazon customers the ability to rent, purchase or subscribe to a huge catalog of videos. The Prime Video Economist team works on disruptive ideas in the Prime Video space.We are looking for a truly innovative Data Scientist to work on disruptive ideas within the Prime Video space. Examples of problem spaces you may be working on include video product pricing, ecosystem effects (how streaming affects rentals or purchases), and forecasting demand for new content on the platform.On our team you will work with a diverse scientific team including engineers and economists as well as other data scientist to build statistical models using world-class data systems and partner directly with the business to implement the solutions.Key job responsibilities· Implement code (Python, R, Scala, etc.) for analyzing data and building machine learning/econometric models to solve specific business problems. Work with software engineering teams to productionize algorithms where appropriate.· Lead the development of the scientific roadmap, guide and develop junior engineers in designing and implementing scientific solutions.· Translate analytic insights into concrete, actionable recommendations for business or product improvement. Develop and present these as reports to senior stakeholders with ranging levels of technical knowledge.· Create, enhance, and maintain technical documentation, and present to other scientists, engineers and business leaders.· Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building to deliver accurate and effective business insights.· Innovate by researching, learning, and adapting new modeling techniques and procedures to existing business problems.· Manage and execute entire project from start to finish including problem solving, data gathering and manipulation, predictive modeling, and stakeholder engagement.
US, WA, Bellevue
Job summaryDo you enjoy solving challenging problems and driving innovations in research? Are you seeking for an environment with a group of motivated and talented scientists like yourself? Do you want to create scalable optimization models and apply machine learning techniques to guide real-world decisions? Do you want to play a key role in the future of Amazon transportation and operations? Come and join us at Amazon's Modeling and Optimization team (MOP).Key job responsibilitiesAn Applied Scientist in the Modeling and Optimization (MOP) team· provides analytical decision support to Amazon planning teams via applying advanced mathematical and statistical techniques.· collaborates effectively with Amazon internal business customers, and is their trusted partner· is proactive and autonomous in discovering and resolving business pain-points within a given scope· is able to identify a suitable level of sophistication in resolving the different business needs· is confident in leveraging existing solutions to new problems where appropriate and is independent in designing and implementing new solutions where needed· is aware of the limitations of his/her proposed solutions and is proactive in communicating them to the business, and advances the application of sciences towards Amazon business problems by bringing new methods, ideas, and practices to the team and scientific community.A day in the life· Your will be developing model-based optimization, simulation, and/or predictive tools to identify and evaluate opportunities to improve customer experience, network speed, cost, and efficiency of capital investment.· You will quantify the improvements resulting from the application of these tools and you will evaluate the trade-offs between potentially competing objectives.· You will develop good communication skills and ability to speak at a level appropriate for the audience, will collaborate effectively with fellow scientists, software development engineers, and product managers, and will deliver business value in a close partnership with many stakeholders from operations, finance, IT, and business leadership.About the team· At the Modeling and Optimization (MOP) team, we use mathematical optimization, algorithm design, statistics, and machine learning to improve decision-making capabilities across WW Operations and Amazon Logistics.· We focus on transportation topology, labor and resource planning for fulfillment centers (FC), routing science, visualization research, data science and development, and process optimization.· We create models to simulate, optimize, and control the fulfillment network with the objective of reducing cost while improving speed and reliability.· We support multiple business lanes, therefore maintain a comprehensive and objective view, coordinating solutions across organizational lines where possible.
US, WA, Seattle
Job summaryAt Amazon, we're working to be the most customer-centric company on earth. To get there, we need exceptionally talented, bright, result oriented, and driven people. Amazon is seeking a Data Scientist - Simulation to assist in designing and optimizing the fulfillment network concepts and process improvements using discrete event simulations for our World Wide Design Engineering Team. Successful candidates will be natural self-starters who have the drive to design, model, and simulate new fulfillment center concepts and processes. The Simulation Data Scientist will be expected to deep dive problems and drive relentlessly towards creative solutions. This individual needs to be comfortable interfacing and driving various functional teams and individuals at all levels of the organization in order to be successful. Perform process modelling and simulation using discrete event simulation software’s, process optimization, statistical data analysis, and Design of Experiments (DOE) etc. to drive decisions on process and designs. Need based remote work option is available.Responsibilities:· Lead system level complex Discrete Event Simulation (DES) projects to build , simulate, and optimize the fulfillment center operational process flow models using FlexSim, Demo 3D, AnyLogic or any other Discrete Event Simulation (DES) software packages· Understand process flows , analyze data, perform Design of Experiments and effectively represent in simulation model to achieve better correlation and process improvements· Manage multiple DES simulation projects and tasks simultaneously and effectively influence, negotiate, and communicate with internal and external business partners, contractors and vendors.· Facilitate process improvement initiatives among site operations, engineering, and corporate systems groups.· Utilize code (python or another object oriented language) for data analysis and modeling algorithms· Analyze historical data to identify trends and support decision making using Statistical Techniques· Lead and coordinate simulation efforts between internal teams and outside vendors to develop optimal solutions for the network, including equipment specification, material flow, process design, and site layout.· Deliver results according to project schedules and quality· Provide written and verbal presentations to share insights and recommendations to audiences of varying levels of technical sophistication.· Make technical trade-offs for long term/short-term needs considering challenges in business area by applying relevant data science disciplines, and interactions among systems.
US, WA, Seattle
Job summaryAmazon is seeking an outstanding Data Scientist to uncover key insights on how customers engage with live sports events on Prime Video globally. With prestigious US sporting matches on Prime Video from NFL’s Thursday Night Football, the WNBA, AVP, the New York Yankees, and the Seattle Sounders, as well as global events like the English Premiere League (UK), UEFA Champions League (Italy, Germany), Ligue 1 (France), US Open Tennis (UK), Roland Garros (France), Autumn Nations Cup Rugby (UK) and more, live sports are an integral and growing component of Prime Video. As our selection of events expands, the Prime Video Content Analytics team is looking to enable agile decision making on live sports by developing key insights into customer engagement with live sport and translating these insights into large scale predictive modeling and analytics solutions.Key job responsibilitiesYou will have the following responsibilities within the scope of our global Prime Video business:· Drive analytics in an uncharted field that is not only developing at a fast pace but also becoming increasingly important to the Prime Video business· Support the analytical needs of stakeholders in the sports, advertising, finance, and live events teams, inclusive of statistical inference, demand modeling, and feature engineering· Build profitability models for new sports rights and partner with finance on business use cases· Think outside the box to use novel data and methodological approaches· Create new metrics that effectively guide the business and deploy dashboards to surface them to senior leadership· Ensure that the quality and timeliness of analytic deliverables meet business expectationsAbout the teamThe Prime Video Content Analytics team uses machine learning, econometrics, and data science to optimize Amazon’s streaming-video catalogue, driving customer engagement and Prime member acquisition. We generate insights to guide Amazon’s digital-video strategy, and we provide direct support to the content-acquisition process. We use detailed customer behavioral data (e.g. streaming history) and detailed information about content (e.g. IMDb-sourced characteristics) to predict and understand what customers like to watch.
ES, M, Madrid
Job summaryAmazon is looking for creative Applied Scientists to tackle some of the most interesting problems on the leading edge of machine learning (ML), search, natural language processing (NLP), and related areas with our Amazon Books team. At Amazon Books we believe that books are not only needed to work, education and entertainment, but are also required for a healthy society. As such, we aim to create an unmatched book discovery experience for our customers worldwide. We enable customers to discover new books, authors and genres through sophisticated recommendation engines, smart search tools and through social interaction, and we need your help to keep innovating in this space.If you are looking for an opportunity to solve deep technical problems and build innovative solutions in a fast-paced environment working within a smart and passionate team, this might be the role for you. You will develop and implement novel algorithms and modeling techniques to advance the state-of-the-art in technology areas at the intersection of ML, search, NLP, and deep learning. You will innovate, help move the needle for applied research in these exciting areas and build cutting-edge and scalable technologies that enable delightful experiences for hundreds of millions of people.In this role you will:· Work collaboratively with other scientists and developers to design and implement scalable models for improving our customers' experience discovering and getting the most out of their books;· Have the opportunity to work with a variety of technologies in a variety of use cases;· Drive scalable solutions from the business to prototyping, production testing and through engineering directly to production;· Drive best practices on the team, deal with ambiguity and competing objectives, and mentor and guide other members to achieve their career growth potential.About the teamWe aspire to be experts at the forefront of AI, machine learning and data science and their application to books e-commerce to help engineering teams innovate for readers, authors and publishers.As an Applied Scientist, you'll help us translate customer problems into tractable technical problems, and find ways to solve them by combining your expertise and that of other scientists and team members. You will work with partner engineering and business teams to ensure solutions have a real impact.
US, WA, Seattle
Job summaryAre you inspired by building new technologies to benefit customers? Do you dream of being at the forefront of robotics and autonomous system technology? Would you enjoy working in a fast paced, highly collaborative, start-up like environment? If you answered yes to any of these then you've got to check out the Amazon Scout team.We’ve been hard at work developing a new, fully-electric delivery system – Amazon Scout – designed to get packages to customers using autonomous delivery devices. These devices were created by Amazon, are the size of a small cooler, and roll along sidewalks at a walking pace. We developed Amazon Scout at our research and development lab in Seattle, ensuring the devices can safely and efficiently navigate around pets, pedestrians and anything else in their path.The Amazon Scout team shares a passion for innovation using advanced technologies, a love of solving complex challenges, and a desire to delight customers. We're looking for people who like dealing with ambiguity, solving hard, large scale problems, and working in a startup like environment. To learn more about Amazon Scout, check out our Amazon Day One Blog here: http://amazon.com/scoutAs a part of the localization team you will:· Collaborate closely with engineers, applied researchers and hardware teams to develop computer vision and machine learning algorithms and software for robots.· Take responsibility for technical problem solving, including creatively meeting product objectives and developing best practices.· Interact with teammates in variety of roles to accomplish your goals· Identify and initiate investigations of new technologies, prototype and test solutions for product features, and design and validate designs that deliver an exceptional user experience.· Recruit, hire and develop other applied scientists.
US, WA, Bellevue
Job summaryThe People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team.Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions.Key job responsibilitiesUse causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees.A day in the lifeWork with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions.About the teamWe are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, Virtual
Job summaryAmazon’s Global Reliability Team is seeking a Principal Research Scientist to help envision, design and build the next generation of predictive maintenance capabilities and inventory management optimization behind Amazon’s Fulfillment Centers, Transportation Services, and Global Specialty Fulfillment.Key job responsibilitiesThe Principal Research Scientist will partner with senior leadership to develop long term strategic products/solutions and will represent and advocate them to leaders in our organization and other partner organizations such as Amazon Fulfillment Technologies, Workplace Health and Safety, amongst others. They will interact with Amazon scholars and universities among other research institutions to ensure that our team and our senior executives are up to speed on important trends, tools and technologies and how they can be used to impact the business.A day in the lifeIn this role, you will participate and lead the brainstorming sessions and review other scientists’ research. They will actively participate in the science community through presenting their research at the internal and external conference. They will mentor senior scientists for their career development and growth and help the company to identify and acquire scientists with the right skillset.About the teamWe are seeking high-energy individuals that are passionate about working with real-time machine and sensor data to build automated systems aimed to improve equipment availability.This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. Experience in applied analytics is essential, and they should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in reliability engineering, econometrics, statistical inference, and time series modeling.
US, MA, Cambridge
Job summaryAmazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced groundbreaking devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?The Role:We are looking for a high caliber Applied Scientist Lead to join our team. As part of the larger technology team working on new consumer technology, your work will have a large impact to hardware, internal software developers, ecosystem, and ultimately the lives of Amazon customers. In this role, you will:• Lead a team of talented audio scientists and SW developers to bring a new and innovative audio products and services to delight customers• Propose new research projects, get buy-in from stakeholders, plan and budget the project and lead the team for successful execution• Work closely with an inter-disciplinary product development team including outside partners to bring the prototype algorithm into commercialization• Mentor team on music/speech/acoustic processing technology development• Manage small team of world class scientists and SW engineers in audio• Take a big part in the mission to create earth's best employerBe a respectable team leader in an open and collaborative environment
US, MA, Boston
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even image yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun.We seek a talented and motivated engineer to tackle broad challenges in system-level analysis. You will work in a small team to quantify system performance at scale and to expand the breadth and depth of our analysis (e.g. increase the range of software components and warehouse processes covered by our models, develop our library of key performance indicators, construct experiments that efficiently root cause emergent behaviors). You will engage with growing teams of software development and warehouse design engineers to drive evolution of the AR system and of the simulation engine that supports our work.This role is a 6 month co-op to join AR full time (40 hours/week) from July-December 2022. Come join us in North Reading, MA, or in our newly expanded innovation hub in Westborough, MA!Both campuses provide a unique opportunity for co-ops to have direct access to robotics testing labs and manufacturing facilities. Remote and hybrid flexibility is available for this role.