Aerial photo of the San Diego waterfront on an overcast day
Aerial photo of the San Diego waterfront on an overcast day
Credit: Jerry Uomala / Getty Images / iStockphoto

Amazon at AEA: The crossroads of economics and AI

Pat Bajari, VP and chief economist for Amazon's Core AI group, on his team's new research and what it says about economists' role at Amazon.

The 2020 meeting of the American Economic Association begins on January 3 in San Diego, and among the Amazon economists attending will be Pat Bajari, VP and chief economist for Amazon’s Core AI group, who is a coauthor on two papers accepted to the conference.

Economic research at Amazon, Bajari explains, is distinctive in the way it crosses disciplinary boundaries. “These disciplines are like their own worlds,” he says. “It’s easy to get siloed doing engineering, machine learning, natural-language processing, computer vision, stats, operational research, economics, and so on. But when these disciplines interact, you get more interesting and useful results.”

Apples to apples

One of Bajari’s two papers at AEA is a case in point. Titled “New Goods, Productivity and the Measurement of Inflation: Using Machine Learning to Improve Quality Adjustments,” it applies new AI techniques to an old problem in the calculation of inflation rates.

Pat Bajari
Pat Bajari, Amazon vice president and chief economist
Carl Clark, Amazon Imaging Studio

“If you look at a product line, over the course of a year, 80% of the products might vanish,” Bajari explains. “When you calculate the rate of inflation, you’re usually doing an annual measure of price changes. But if 80% of products are gone, that measurement can be inaccurate.”

A famous example, Bajari explains, is personal computers in the late ’90s. At the time, he says, 95% of computers would sell out in the course of a year. The computers on the shelves one January could have very different technical specifications from those on the shelves a year later, making direct price comparison misleading.

Consequently, the standard method of calculating inflation indicated little change in the price of personal computers, even though the price of computational power was plummeting. The classical solution to this problem is so-called hedonic pricing, in which the price of a product is factored into several components, which can be compared independently.

So, for instance, late-’90s computers could be compared according to their price per megahertz of processing speed, per megabyte of random-access memory, per megabyte of storage, and so on. Bajari’s first AEA paper updates hedonic pricing for the age of deep learning. On the paper, he joins Victor Chernozhukov, a professor of economics at MIT and a senior principal economist in Amazon’s Core AI group; Ramon Huerta, a research scientist at the University of California, San Diego, and a principal applied scientist in the Amazon North American Consumer group; George Monokroussos, a former senior economist at Amazon; and three other members of Core AI: Zhihao Cen, a senior applied scientist Junbo Li; a senior software engineer; and Manoj Manukonda, a senior data engineer.

Instead of factorizing product prices themselves, the researchers trained a machine learning model to identify correlations between product features and prices. If the model is trained on data from one year but fed descriptions of products on the shelves a year later, it will spit out the products’ prices according to the earlier valuation. Comparing the predicted and actual prices provides a measure of inflation.

Hedonic-pricing model
To predict a product's price, a new machine learning model factors in numeric data such as number of reviews and average star rating, textual data such as product descriptions and titles, and even visual data such as product shots.
Stacy Reilly

Internally, Amazon can use this type of model to analyze business trends. But if central bankers applied a similar model to products representative of the economy as a whole, they could observe inflation rate variations in real time.

“If central bankers have a view with a one-day latency, it could give them signals about whether monetary policy is too loose or too tight,” Bajari explains.

Feedback loops

Bajari’s other AEA paper examines the design of randomized experiments. It reports work done in collaboration with Guido Imbens, a member of Core AI and the Applied Econometrics Professor and professor of economics at Stanford Business School; Thomas Richardson, a professor of statistics at the University of Washington and an Amazon Scholar; Brian Burdick, the director of Core AI; Ido Rosen, a principal software engineer in Burdick’s group; and James McQueen, a senior applied scientist in Amazon’s Customer Behavior Analytics group.

The most familiar example of a randomized experiment is a drug trial, where some subjects receive an experimental drug, some receive a placebo, and their outcomes are compared. But randomized experiments are also common in industry.

Suppose, for instance, that Amazon researchers develop a new algorithm for calculating how much of a product to restock at a fulfillment center as a function of recent sales rates and supply on hand. In simulations, the algorithm promises more reliable delivery and greater customer satisfaction, but there’s a question about whether those theoretical gains will translate into practice.

Amazon might conduct a randomized experiment in which some fulfillment centers use the new algorithm, some use the old algorithm, and the average results are compared. Such experiments, however, are liable to so-called spillover effects, where the “treatment” — in this case, the deployment of the new algorithm — ends up having consequences for the control group — in this case, the fulfillment centers using the old algorithm.

Suppose that the treatment results in faster delivery of certain products, and consequently, those products grow in popularity. Amazon’s recommendation engine begins recommending those products more frequently, even to customers served by fulfillment centers using the old restock algorithm. Demand for the products spikes, and the control group starts selling through its stocks — a negative outcome, in terms of the experimental design. When the results of the experiment are tallied, the control group’s performance is artificially depreciated because of the treatment.

“This type of spillover does not happen in standard medical-drug trials, because one individual taking the new drug does not affect the outcome for another individual taking the placebo,” Imbens says. “But it is a feature of many experiments at Amazon and similar companies, where we have complex feedback loops.”

Exerting controls

One way to identify such spillover effects would be to ensure that, for every product that receives the treatment, there’s a related product that doesn’t, regardless of where it’s stored. That would make it possible to determine whether demand spikes are affecting product classes as a whole or are limited to treated products. But it complicates the experimental design.

The researchers’ paper presents an ambitious blueprint for performing such complex experiments. It describes how to simultaneously measure average effects and identify spillovers within a single experiment — by, for instance, systematically varying the treatment’s application to pairs of fulfillment centers and products. It also presents statistical techniques for analyzing the results of such experiments.

The researchers’ blueprint could be applied in a host of different contexts — movie recommendations, rideshare services, short-term-property-rental sites, homebuying sites, retail sites, job search sites, and the like. It also generalizes from double randomization — a given product can receive different treatments at different fulfillment centers, and a given fulfillment center can treat some products and not others — to higher-dimensional randomization — varying treatment according to season, delivery destination, vendor, and so on.

“When people do these kinds of experiments, they usually randomize only one variable at a time,” Bajari explains. “We want to go further with this idea, where we use multiple randomizations to learn supply responses, demand responses, equilibria — all with the goal to keep improving the customer experience.”

Helping identify the causal relationships that underlie the data, Bajari says, is one of the ways in which the economic perspective is useful. But another is in deciding what to measure, across what time frame.

“Usually, ML and AI are tools for making decisions,” Bajari says. “If you have a particular product, how much should you stock of it? You want to make that decision in a present-value-maximizing way. You don’t want to sacrifice long-term success for short-term gains. If you only looked at short-term numbers, we would cut safety stock by half. Then customers would be more apt to find products out of stock, which means they might be less likely to shop on Amazon, which in turn could hurt growth.

“If you want to use ML and AI to make decisions in a rational way, you need a way to trade off long-term and short-term results. This is a place where economists help. What should a firm rationally optimize for? That’s just squarely in economics. That’s what we do.”

Amazon's involvement at AEA/ASSA

Paper and presentation schedule

Friday, 1/3 | 2:30 pm - 4:30 pm | Marriott Marquee San Diego | San Diego Ballroom A

"GDPR and the Home Bias of Venture Investment"

Jian Jia (Illinois Institute of Technology) · Ginger Jin (University of Maryland/Amazon Scholar) · Liad Wagman (Illinois Institute of Technology)

"New Goods, Productivity and the Measurement of Inflation: Using Machine Learning to Improve Quality Adjustments"

Pat Bajari (Amazon) · Zhihao Cen (Amazon) · Victor Chernozhukov (MIT/Amazon) · Ramon Huerta (UCSD/Amazon) · Junbo Li (Amazon) · Manoj Manukonda (Amazon) · George Monokroussos (Wayfair)

"Double Randomized Online Experiments"

Pat Bajari (Amazon) · Brian Burdick (Amazon) · Guido Imbens (Stanford Graduate School of Business/Amazon) · James McQueen (Amazon) · Thomas Richardson (University of Washington/Amazon Scholar) · Ido Rosen (Amazon)

Saturday, 1/4 | 2:30 pm - 4:30 pm | Marriott Marquis San Diego | Del Mar

"Sustained Credit Card Borrowing"

Sergei Koulayev (Amazon) · Daniel Grodzicki (Pennsylvania State University/Consumer Financial Protection Bureau)

Workshops

Econometrica Session: New Developments in Econometrics

Chair: Guido Imbens

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.