Aerial photo of the San Diego waterfront on an overcast day
Aerial photo of the San Diego waterfront on an overcast day
Credit: Jerry Uomala / Getty Images / iStockphoto

Amazon at AEA: The crossroads of economics and AI

Pat Bajari, VP and chief economist for Amazon's Core AI group, on his team's new research and what it says about economists' role at Amazon.

The 2020 meeting of the American Economic Association begins on January 3 in San Diego, and among the Amazon economists attending will be Pat Bajari, VP and chief economist for Amazon’s Core AI group, who is a coauthor on two papers accepted to the conference.

Economic research at Amazon, Bajari explains, is distinctive in the way it crosses disciplinary boundaries. “These disciplines are like their own worlds,” he says. “It’s easy to get siloed doing engineering, machine learning, natural-language processing, computer vision, stats, operational research, economics, and so on. But when these disciplines interact, you get more interesting and useful results.”

Apples to apples

One of Bajari’s two papers at AEA is a case in point. Titled “New Goods, Productivity and the Measurement of Inflation: Using Machine Learning to Improve Quality Adjustments,” it applies new AI techniques to an old problem in the calculation of inflation rates.

Pat Bajari
Pat Bajari, Amazon vice president and chief economist
Carl Clark, Amazon Imaging Studio

“If you look at a product line, over the course of a year, 80% of the products might vanish,” Bajari explains. “When you calculate the rate of inflation, you’re usually doing an annual measure of price changes. But if 80% of products are gone, that measurement can be inaccurate.”

A famous example, Bajari explains, is personal computers in the late ’90s. At the time, he says, 95% of computers would sell out in the course of a year. The computers on the shelves one January could have very different technical specifications from those on the shelves a year later, making direct price comparison misleading.

Consequently, the standard method of calculating inflation indicated little change in the price of personal computers, even though the price of computational power was plummeting. The classical solution to this problem is so-called hedonic pricing, in which the price of a product is factored into several components, which can be compared independently.

So, for instance, late-’90s computers could be compared according to their price per megahertz of processing speed, per megabyte of random-access memory, per megabyte of storage, and so on. Bajari’s first AEA paper updates hedonic pricing for the age of deep learning. On the paper, he joins Victor Chernozhukov, a professor of economics at MIT and a senior principal economist in Amazon’s Core AI group; Ramon Huerta, a research scientist at the University of California, San Diego, and a principal applied scientist in the Amazon North American Consumer group; George Monokroussos, a former senior economist at Amazon; and three other members of Core AI: Zhihao Cen, a senior applied scientist Junbo Li; a senior software engineer; and Manoj Manukonda, a senior data engineer.

Instead of factorizing product prices themselves, the researchers trained a machine learning model to identify correlations between product features and prices. If the model is trained on data from one year but fed descriptions of products on the shelves a year later, it will spit out the products’ prices according to the earlier valuation. Comparing the predicted and actual prices provides a measure of inflation.

Hedonic-pricing model
To predict a product's price, a new machine learning model factors in numeric data such as number of reviews and average star rating, textual data such as product descriptions and titles, and even visual data such as product shots.
Stacy Reilly

Internally, Amazon can use this type of model to analyze business trends. But if central bankers applied a similar model to products representative of the economy as a whole, they could observe inflation rate variations in real time.

“If central bankers have a view with a one-day latency, it could give them signals about whether monetary policy is too loose or too tight,” Bajari explains.

Feedback loops

Bajari’s other AEA paper examines the design of randomized experiments. It reports work done in collaboration with Guido Imbens, a member of Core AI and the Applied Econometrics Professor and professor of economics at Stanford Business School; Thomas Richardson, a professor of statistics at the University of Washington and an Amazon Scholar; Brian Burdick, the director of Core AI; Ido Rosen, a principal software engineer in Burdick’s group; and James McQueen, a senior applied scientist in Amazon’s Customer Behavior Analytics group.

The most familiar example of a randomized experiment is a drug trial, where some subjects receive an experimental drug, some receive a placebo, and their outcomes are compared. But randomized experiments are also common in industry.

Suppose, for instance, that Amazon researchers develop a new algorithm for calculating how much of a product to restock at a fulfillment center as a function of recent sales rates and supply on hand. In simulations, the algorithm promises more reliable delivery and greater customer satisfaction, but there’s a question about whether those theoretical gains will translate into practice.

Amazon might conduct a randomized experiment in which some fulfillment centers use the new algorithm, some use the old algorithm, and the average results are compared. Such experiments, however, are liable to so-called spillover effects, where the “treatment” — in this case, the deployment of the new algorithm — ends up having consequences for the control group — in this case, the fulfillment centers using the old algorithm.

Suppose that the treatment results in faster delivery of certain products, and consequently, those products grow in popularity. Amazon’s recommendation engine begins recommending those products more frequently, even to customers served by fulfillment centers using the old restock algorithm. Demand for the products spikes, and the control group starts selling through its stocks — a negative outcome, in terms of the experimental design. When the results of the experiment are tallied, the control group’s performance is artificially depreciated because of the treatment.

“This type of spillover does not happen in standard medical-drug trials, because one individual taking the new drug does not affect the outcome for another individual taking the placebo,” Imbens says. “But it is a feature of many experiments at Amazon and similar companies, where we have complex feedback loops.”

Exerting controls

One way to identify such spillover effects would be to ensure that, for every product that receives the treatment, there’s a related product that doesn’t, regardless of where it’s stored. That would make it possible to determine whether demand spikes are affecting product classes as a whole or are limited to treated products. But it complicates the experimental design.

The researchers’ paper presents an ambitious blueprint for performing such complex experiments. It describes how to simultaneously measure average effects and identify spillovers within a single experiment — by, for instance, systematically varying the treatment’s application to pairs of fulfillment centers and products. It also presents statistical techniques for analyzing the results of such experiments.

The researchers’ blueprint could be applied in a host of different contexts — movie recommendations, rideshare services, short-term-property-rental sites, homebuying sites, retail sites, job search sites, and the like. It also generalizes from double randomization — a given product can receive different treatments at different fulfillment centers, and a given fulfillment center can treat some products and not others — to higher-dimensional randomization — varying treatment according to season, delivery destination, vendor, and so on.

“When people do these kinds of experiments, they usually randomize only one variable at a time,” Bajari explains. “We want to go further with this idea, where we use multiple randomizations to learn supply responses, demand responses, equilibria — all with the goal to keep improving the customer experience.”

Helping identify the causal relationships that underlie the data, Bajari says, is one of the ways in which the economic perspective is useful. But another is in deciding what to measure, across what time frame.

“Usually, ML and AI are tools for making decisions,” Bajari says. “If you have a particular product, how much should you stock of it? You want to make that decision in a present-value-maximizing way. You don’t want to sacrifice long-term success for short-term gains. If you only looked at short-term numbers, we would cut safety stock by half. Then customers would be more apt to find products out of stock, which means they might be less likely to shop on Amazon, which in turn could hurt growth.

“If you want to use ML and AI to make decisions in a rational way, you need a way to trade off long-term and short-term results. This is a place where economists help. What should a firm rationally optimize for? That’s just squarely in economics. That’s what we do.”

Amazon's involvement at AEA/ASSA

Paper and presentation schedule

Friday, 1/3 | 2:30 pm - 4:30 pm | Marriott Marquee San Diego | San Diego Ballroom A

"GDPR and the Home Bias of Venture Investment"

Jian Jia (Illinois Institute of Technology) · Ginger Jin (University of Maryland/Amazon Scholar) · Liad Wagman (Illinois Institute of Technology)

"New Goods, Productivity and the Measurement of Inflation: Using Machine Learning to Improve Quality Adjustments"

Pat Bajari (Amazon) · Zhihao Cen (Amazon) · Victor Chernozhukov (MIT/Amazon) · Ramon Huerta (UCSD/Amazon) · Junbo Li (Amazon) · Manoj Manukonda (Amazon) · George Monokroussos (Wayfair)

"Double Randomized Online Experiments"

Pat Bajari (Amazon) · Brian Burdick (Amazon) · Guido Imbens (Stanford Graduate School of Business/Amazon) · James McQueen (Amazon) · Thomas Richardson (University of Washington/Amazon Scholar) · Ido Rosen (Amazon)

Saturday, 1/4 | 2:30 pm - 4:30 pm | Marriott Marquis San Diego | Del Mar

"Sustained Credit Card Borrowing"

Sergei Koulayev (Amazon) · Daniel Grodzicki (Pennsylvania State University/Consumer Financial Protection Bureau)

Workshops

Econometrica Session: New Developments in Econometrics

Chair: Guido Imbens

Research areas

Related content

US, VA, Arlington
Do you want a role with deep meaning and the ability to have a global impact? Hiring top talent is not only critical to Amazon’s success – it can literally change the world. It took a lot of great hires to deliver innovations like AWS, Prime, and Alexa, which make life better for millions of customers around the world. As part of the Intelligent Talent Acquisition (ITA) team, you'll have the opportunity to reinvent Amazon’s hiring process with unprecedented scale, sophistication, and accuracy. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals, and more. Our shared goal is to fairly and precisely connect the right people to the right jobs. Last year, we delivered over 6 million online candidate assessments, driving a merit-based hiring approach that gives candidates the opportunity to showcase their true skills. Each year we also help Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of associates in the right quantity, at the right location, at exactly the right time. You’ll work on state-of-the-art research with advanced software tools, new AI systems, and machine learning algorithms to solve complex hiring challenges. Join ITA in using cutting-edge technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Within ITA, the Global Hiring Science (GHS) team designs and implements innovative hiring solutions at scale. We work in a fast-paced, global environment where we use research to solve complex problems and build scalable hiring products that deliver measurable impact to our customers. We are seeking selection researchers with a strong foundation in hiring assessment development, legally-defensible validation approaches, research and experimental design, and data analysis. Preferred candidates will have experience across the full hiring assessment lifecycle, from solution design to content development and validation to impact analysis. We are looking for equal parts researcher and consultant, who is able to influence customers with insights derived from science and data. You will work closely with cross-functional teams to design new hiring solutions and experiment with measurement methods intended to precisely define exactly what job success looks like and how best to predict it. Key job responsibilities What you’ll do as a GHS Research Scientist: • Design large-scale personnel selection research that shapes Amazon’s global talent assessment practices across a variety of topics (e.g., assessment validation, measuring post-hire impact) • Partner with key stakeholders to create innovative solutions that blend scientific rigor with real-world business impact while navigating complex legal and professional standards • Apply advanced statistical techniques to analyze massive, diverse datasets to uncover insights that optimize our candidate evaluation processes and drive hiring excellence • Explore emerging technologies and innovative methodologies to enhance talent measurement while maintaining Amazon's commitment to scientific integrity • Translate complex research findings into compelling, actionable strategies that influence senior leader/business decisions and shape Amazon's talent acquisition roadmap • Write impactful documents that distill intricate scientific concepts into clear, persuasive communications for diverse audiences, from data scientists to business leaders • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities A day in the life Imagine diving into challenges that impact millions of employees across Amazon's global operations. As a GHS Research Scientist, you'll tackle questions about hiring and organizational effectiveness on a global scale. Your day might begin with analyzing datasets to inform how we attract and select world-class talent. Throughout the day, you'll collaborate with peers in our research community, discussing different research methodologies and sharing innovative approaches to solving unique personnel challenges. This role offers a blend of focused analytical time and interacting with stakeholders across the globe.
US, WA, Seattle
We are looking for a researcher in state-of-the-art LLM technologies for applications across Alexa, AWS, and other Amazon businesses. In this role, you will innovate in the fastest-moving fields of current AI research, in particular in how to integrate a broad range of structured and unstructured information into AI systems (e.g. with RAG techniques), and get to immediately apply your results in highly visible Amazon products. If you are deeply familiar with LLMs, natural language processing, computer vision, and machine learning and thrive in a fast-paced environment, this may be the right opportunity for you. Our fast-paced environment requires a high degree of autonomy to deliver ambitious science innovations all the way to production. You will work with other science and engineering teams as well as business stakeholders to maximize velocity and impact of your deliverables. It's an exciting time to be a leader in AI research. In Amazon's AGI Information team, you can make your mark by improving information-driven experience of Amazon customers worldwide!
US, NY, New York
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. Identify and devise new video related solutions following a customer-obsessed scientific approach to address customer or business problems when the problem is ill-defined, needs to be framed, and new methodologies or paradigms need to be invented at the product level. Articulate potential scientific challenges of ongoing or future customers’ needs or business problems, and present interventions to address them. Independently assess alternative video related technologies, driving evaluation and adoption of those that fit best A day in the life As an Applied Scientist on the Sponsored Products Video team, you will work with a team of talented and experienced engineers, scientists, and designers to help bring new products to market and ensure that our customers are delighted by what we create. The Sponsored Products Video team is responsible for the design, development, and implementation of Sponsored Products Video experiences worldwide. About the team The Sponsored Products Video team within Sponsored Products and Brands creates relevant and engaging video experiences, connecting advertisers and shoppers. We are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping delightful, & personal.
IN, TS, Hyderabad
We're seeking an Applied Scientist to lead and innovate in applying advanced AI technologies that will reshape how businesses sell on Amazon. Our team is passionate about leveraging Machine Learning, GenAI, and Agentic AI to help B2B sellers optimize their operations and drive growth. Join Amazon Business 3P (Third Party - Sellers) - a rapidly growing global organization where we innovate at the intersection of AI technology and B2B commerce. We're reimagining how sellers reach and serve business customers, creating intelligent solutions that help them grow their B2B business on Amazon. From AI-powered Seller Central tools to smart business certifications, dynamic pricing capabilities, and advanced analytics, we're transforming how B2B selling happens. As an Applied Scientist II on our AB 3P Tech team, you'll drive the development and implementation of state-of-the-art algorithms and models for supervised fine-tuning and reinforcement learning. You'll work with highly technical, entrepreneurial teams to: - Design and implement AI models that power the B2B selling experience - Lead the development of GenAI products that can handle Amazon-scale use cases - Drive research and implementation of advanced algorithms for human feedback and complex reasoning - Make strategic AI technology decisions and mentor technical talent - Own critical AI systems spanning from Seller Central to Amazon Business detail pages Join us in shaping the future of B2B selling - we're building applied AI solutions that businesses love and trust for their day-to-day success. If you are scrappy and bias for action is your favorite Leadership Principle, you'll fit right in as we innovate across the seller experience to create significant impact in this fast-growing business. Key job responsibilities Key job responsibilities: - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in Gen AI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of Gen AI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences About the team At Amazon Business Third Party (AB3P) Tech, we're revolutionizing B2B e-commerce by empowering sellers in the business marketplace. Our scope spans the complete B2B selling journey, from Seller Central to Amazon Business detail pages, cart, and checkout for merchant-fulfilled offers. Our entrepreneurial culture and global reach define us. We develop features across seller experience, delivery, certifications, fees, registration, and analytics, collaborating with worldwide teams and leveraging advanced AI technologies to continuously innovate. Working in true Day 1 spirit, we build next-generation solutions that shape the future of B2B commerce. Join us in building next-generation solutions that shape the future of B2B commerce.
GB, London
Come build the future of entertainment with us. Are you interested in shaping the future of movies and television? Prime Video is a premium streaming service that offers customers a vast collection of TV shows and movies - all with the ease of finding what they love to watch in one place. We offer customers thousands of popular movies and TV shows including Amazon Originals and exclusive licensed content to exciting live sports events. Prime Video is a fast-paced, growth business - available in over 200 countries and territories worldwide. The Video Content Research team works in a dynamic environment where innovating on behalf of our customers is at the heart of everything we do. We are seeking a Data Scientist to develop scalable models that uncover key insights into how, why and when customers engage with Prime Video marketing. Key job responsibilities In this role you will work closely with business stakeholders and technical peers (data scientists, economists and engineers) to develop causal marketing measurement models, analyze experiments and investigate customer, marketing and content related factors that drive engagement with Prime Video. You will create mechanisms and infrastructure to deploy complex models and generate insights at scale. You will have the opportunity to work with large datasets, work with AWS to build and deploy machine learning models that impact Prime Video's marketing decisions. About the team The Video Content Research team uses machine learning, econometrics, and data science to optimize Amazon's marketing and content investments. We generate insights for Amazon's digital video strategy, partnering with finance, marketing, and content teams. We analyze customer behavior on Prime Video (marketing impressions, clicks on owned channels) to identify optimization opportunities.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, VA, Arlington
The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team PXTCS is a multidisciplinary science team that develops innovative solutions to make Amazon Earth's Best Employer
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of robotics foundation models that: - Enable unprecedented generalization across diverse tasks - Enable unprecedented robustness and reliability, industry-ready - Integrate multi-modal learning capabilities (visual, tactile, linguistic) - Accelerate skill acquisition through demonstration learning - Enhance robotic perception and environmental understanding - Streamline development processes through reusable capabilities The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities As an Applied Science Manager in the Foundations Model team, you will: - Build and lead a team of scientists and developers responsible for foundation model development - Define the right ‘FM recipe’ to reach industry ready solutions - Define the right strategy to ensure fast and efficient development, combining state of the art methods, research and engineering. - Lead Model Development and Training: Designing and implementing the model architectures, training and fine tuning the foundation models using various datasets, and optimize the model performance through iterative experiments - Lead Data Management: Process and prepare training data, including data governance, provenance tracking, data quality checks and creating reusable data pipelines. - Lead Experimentation and Validation: Design and execute experiments to test model capabilities on the simulator and on the embodiment, validate performance across different scenarios, create a baseline and iteratively improve model performance. - Lead Code Development: Write clean, maintainable, well commented and documented code, contribute to training infrastructure, create tools for model evaluation and testing, and implement necessary APIs - Research: Stay current with latest developments in foundation models and robotics, assist in literature reviews and research documentation, prepare technical reports and presentations, and contribute to research discussions and brainstorming sessions. - Collaboration: Work closely with senior scientists, engineers, and leaders across multiple teams, participate in knowledge sharing, support integration efforts with robotics hardware teams, and help document best practices and methodologies.
CA, QC, Montreal
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, scene understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Drive independent research initiatives in robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Lead technical projects from conceptualization through deployment, ensuring robust performance in production environments - Collaborate with platform teams to optimize and scale models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures, leveraging our extensive compute infrastructure to train and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through ground breaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, WA, Bellevue
Amazon is looking for a Principal Applied Scientist world class scientists to join its AWS Fundamental Research Team working within a variety of machine learning disciplines. This group is entrusted with developing core machine learning solutions for AWS services. At the AWS Fundamental Research Team you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually large scale ML solutions across different domains and computation platforms. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. About the team About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.