Determining causality in correlated time series

New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

Given observed time series and a target time series of interest, can we identify the causes of the target, without excluding the presence of hidden time series? This question arises in many fields — such as finance, biology, and supply chain management — where sequences of data constitute partial observations of a system.

Imagine, for instance, that we have time series for the prices of dairy products. From the data alone, can we identify the causes of fluctuations in the price of butter?

Dairy prices.png
The prices of dairy products in Germany are correlated, but do any of those correlations imply causation?

The standard way to represent causal relationships between variables that are associated with each other is with a graph whose nodes represent variables and whose edges represent causal relationships.

In a paper that we presented at the International Conference on Machine Learning (ICML) 2021, coauthored by Bernhard Schölkopf, we described a new technique for detecting all the direct causal features of a target time series — and only the direct or indirect causal features — given some graph constraints. The proposed method yielded false-positive rates of detected causes close to zero.

The constraints we observe refer to the target and the “memory” of some hidden time series (the lack of dependency on their own pasts, in some cases). We wanted to limit our assumptions to those that can be naturally derived from the setting and that could not be avoided otherwise. Therefore, we wanted to avoid strong assumptions made by other methods, such as excluding hidden common causes (unobserved time series that caused multiple observed ones).

We also wanted to avoid other drawbacks of prior methods, such as requiring interventions on the system (to test for particular causal sequences) and requiring large conditioning sets (sets of variables that must be controlled for to detect dependences) or exhaustive conditional-independence tests, which hinder the statistical strength of the outcome.

Our method, by contrast, accounts for hidden common causes, uses only observational data, and constructs conditioning sets that are small and efficient in terms of signal-to-noise ratio, given some graph constraints that seemed hard to avoid.

Conditioning set.gif
The researchers' new method constructs a conditioning set — a set of variables that must be controlled for — that enables tests for conditional dependence and independence in a causal graph.

Conditional independence

As is well known, statistical dependence (i.e., correlation in linear cases) does not imply causation. The graphs we use to represent causal relationships between associated variables are so-called directed acyclic graphs (DAGs), meaning the edges have direction and there are no loops. The direction of the edges (represented by arrows in the graphs below) indicates the direction of causal influence. In the time series case, we use “full time DAGs”, where each node represents a different time step from a time series. 

To analyze whether a third variable, S, explains a statistical dependency (i.e., correlation) between two other variables, one checks whether the dependency disappears after restricting the statistics to data points with fixed values of S. In larger graphs, S can be a whole set of variables, which we call a conditioning set. Controlling for all the variables in a conditioning set is known as conditional independence testing and is the main tool we use in our method. 

Another important notion is that of confounding. If two variables, X and Y, are dependent, not because one causes the other, but because they’re both caused by a third variable, U, we say that they are confounded by U.

Before we get into the complex graphs of time series, let's present the intuition behind our method with simple graphs. 

In the graphs below, we manage to distinguish between causal influence and confounding relationships by searching for different patterns of conditional independence. In both graphs, X and Y are dependent (i.e., they vary together). But in the left-hand graph, Z and Y are independent when we condition on the cause X; i.e., when we control for X, variations in Y become independent from variations in Z

When, however, there is a hidden confounder between X and Y, as in the graph at right, Z and Y become dependent when conditioning on X.

This can seem counterintuitive. When we condition on a variable, we treat it as if we know its outcome. In the graph below, because we know how Z contributes to X, the difference between this contribution and the actual value of X comes from U (with some variation from noise). Since Y varies with U, it reflects that variation as well, and Z and Y become dependent.

simple_iid_case.png
An example of how the presence of a confounder can create causal dependence.

Causality in time series

This idea of finding similar characteristic patterns of conditional independences to distinguish causes from confounders is very relevant to our method. In the time series case, the graph is much more complicated than in the examples above. Here we show such a time series graph:

Baseline causal graph.png
A full time graph with hidden time series (U).

Here, we have a univariate (one-dimensional) target time series, Y, whose causes we want to find. Then we have several observed candidate time series, Xi, which might be causing the target or have different dependencies with it. Finally, we allow for the existence of several hidden time series, U.

We know the directions of some edges from the time order, which is helpful. On the other hand, time series’ dependence on their own pasts complicates the picture, because it creates common-cause schemes between nodes. 

For each candidate time series, we want to isolate the current and previous node and the corresponding target node. We thus extract triplets like the one indicated by green and yellow in the graph below.

Causal graph conditional tests.png
Tests for conditional dependence and independence in the full time graph.

If we manage to do that, then it is enough to check whether the green nodes become independent when we simultaneously condition on the yellow node and all the purple ones. 

If there is a hidden confounder between the yellow node and the target’s green node, then, conditioning on the yellow node will force a dependence between the two green nodes, as in the first example above. But to perform that test, we need to isolate our triplet from the causal influences of other time series. 

To do that, we construct a conditioning set, S, that includes at most one node from each time series that is dependent on the target. This node corresponds to the one that enters the previous time stamp of the target (Yt in the graph above). And of course, we also need to include the previous time stamp of the target node itself (Yt, above) to remove the target's past dependency, as well as the yellow node.

Here we see that indeed the relationship between Xj and Y is confounded (Xj does not cause Y, although they appear to be related). We see that the second condition of our method is violated, and consequently, Xj is correctly rejected (as it is not a cause of Y).

Given some restrictions on the graph, which we do not consider extreme given the hardness of hidden confounding, we propose and prove two theorems for the identification of direct and indirect causes in single-lag graphs — that is, graphs in which a node in a candidate time series shares only one edge with nodes in the target time series. These theorems result in an algorithm with only two conditional-independence tests and well-defined conditioning sets, which scales linearly with the number of candidate time series. 

dairy_experiments_graphs.PNG
Graphs of the causal relationships between dairy-product prices in Germany, Ireland, and the UK, with the true-positive rates (TPR) and true-negative rates (TNR) achieved by the researchers' new method.

We now return to our original motivational example, predicting the price of butter. The real-world data we used to test our approach included the price of raw milk, the price of butter, and, depending on the country, the prices of other dairy products, such as cheese and whey powder. Our method correctly deduced that the price of butter was caused by the price of raw milk but not by the prices of other dairy products, although they were strongly dependent on it. In one dataset, where the data did not include the price of raw milk, our method correctly deduced that the dependencies between the price of butter and the prices of other dairy products did not imply causation. 

Research areas

Related content

GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
We are expanding our Global Risk Management & Claims team and insurance program support for Amazon’s growing risk portfolio. This role will partner with our risk managers to develop pricing models, determine rate adequacy, build underwriting and claims dashboards, estimate reserves, and provide other analytical support for financially prudent decision making. As a member of the Global Risk Management team, this role will provide actuarial support for Amazon’s worldwide operation. Key job responsibilities ● Collaborate with risk management and claims team to identify insurance gaps, propose solutions, and measure impacts insurance brings to the business ● Develop pricing mechanisms for new and existing insurance programs utilizing actuarial skills and training in innovative ways ● Build actuarial forecasts and analyses for businesses under rapid growth, including trend studies, loss distribution analysis, ILF development, and industry benchmarks ● Design actual vs expected and other metrics dashboards to assist decision makings in pricing analysis ● Create processes to monitor loss cost and trends ● Propose and implement loss prevention initiatives with impact on insurance pricing in mind ● Advise underwriting decisions with analysis on driver risk profile ● Support insurance cost budgeting activities ● Collaborate with external vendors and other internal analytics teams to extract insurance insight ● Conduct other ad hoc pricing analyses and risk modeling as needed We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Seattle, WA, USA
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, NY, New York
The Amazon SCOT Forecasting team seeks a Senior Applied Scientist to join our team. Our research team conducts research into the theory and application of reinforcement learning. This research is shared in top journals and conferences and has a significant impact on the field. Through our launch of several Deep RL models into production, our work also affects decision making in the real world. Members of our group have varied interests—from the mathematical foundations of reinforcement learning, to language modeling, to maintaining the performance of generative models in the face of copyrights, and more. Recent work has focused on sample efficiency of RL algorithms, treatment effect estimation, and RL agents integrating real-world constraints, as applied in supply chains. Previous publications include: - Linear Reinforcement Learning with Ball Structure Action Space - Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data - A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation - Deep Inventory Management - What are the Statistical Limits of Offline RL with Linear Function Approximation? Working collaboratively with a group of fellow scientists and engineers, you will identify complex problems and develop solutions in the RL space. We encourage collaboration across teammates and their areas of specialty, leading to creative and ambitious projects with the goal of publication and production. Key job responsibilities - Drive collaborative research and creative problem solving - Constructively critique peer research; mentor junior scientists - Create experiments and prototype implementations of new algorithms and techniques - Collaborate with engineering teams to design and implement software built on these new algorithms - Contribute to progress of the Amazon and broader research communities by producing publications We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, CA, Virtual Location - California
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate and grow their personal interests and passions. We're always live at Twitch. About the Role: As a Data Scientist, Analytics member of the Data Platform - Insights team, you'll provide data analysis and support for platform, service, and operational engineering teams at Twitch, shaping the way success is measured. Defining what questions should be asked and scaling analytics methods and tools to support our growing business. Additionally, you will help support the vision for business analytics, solutions architecture for data related business constructs, as well as tactical execution such as experiment analysis and campaign performance reporting. You are paving the way for high-quality, high-velocity decisions and will report to the Manager, Data Science. For this role, we're looking for an experienced data staff who will oversee data instrumentation, dashboard/report building, metrics reviews, inform team investments, guidance on success/failure metrics and ad-hoc analysis. You will also work with technical and non-technical staff members throughout the company, and your effort will have an impact on hundreds of partners at Twitch You Will: - Work with members of Platforms & Services to guide them towards better decision making from the available data. - Promote data knowledge and insights through managing communications with partners and other teams, collaborate with colleagues to complete data projects and ensure all parties can use the insights to further improve. - Maintain a customer-centric focus while being a domain and product expert through data, develop trust amongst peers, and ensure that the teams and programs have access to data to make decisions - Manage ambiguous problems and adapt tools to answer complicated questions. - Identify the trade-offs between speed and quality of different approaches. - Create analytical frameworks to measure team success by partnering with teams to establish success metrics, create approaches to track the data and troubleshoot errors, measure and evaluate the data to develop a common language for all colleagues to understand these metrics. - Operationalize data processes to provide partners with ad-hoc analysis, automated dashboards, and self-service reporting tools so that everyone gets a good sense of the state of the business Perks: - Medical, Dental, Vision & Disability Insurance - 401(k), Maternity & Parental Leave - Flexible PTO - Commuter Benefits - Amazon Employee Discount - Monthly Contribution & Discounts for Wellness Related Activities & Programs (e.g., gym memberships, off-site massages), -Breakfast, Lunch & Dinner Served Daily - Free Snacks & Beverages We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | Seattle, WA, USA | Virtual Location - CA
US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? Have you also wondered what are different ways that the transportation assets can be used to delight the customer even more. If so, the Amazon transportation Services, Product and Science is for you . We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed Applied Scientist with strong scientific thinking, good software and statistics experience, skills to help manage projects and operations, improve metrics, and develop scalable processes and tools. The primary role of an Applied Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how we operate the middle mile network. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, machine learning , and the ability to use data and research to make changes. This role requires robust skills in research and implementation of scalable products and models . This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Los Angeles
The Alexa team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background, to help build industry-leading Speech and Language technology. Key job responsibilities As an Applied Scientist with the Alexa team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The Alexa team has a mission to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Los Angeles, CA, USA
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. The position is based in Seattle but will interact with global leaders and teams in Europe, Japan, China, Australia, and other regions. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models. We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA