ICASSP: Michael I. Jordan’s “alternative view on AI”

In a plenary talk, the Berkeley professor and Distinguished Amazon Scholar will argue that AI research should borrow concepts from economics and focus on social collectives.

Intelligence is notoriously hard to define, but when most people (including computer scientists) think about it, they construe it on the model of human intelligence: an information-processing capacity that allows an autonomous agent to act upon the world.

Michael I. Jordan, the Pehong Chen Distinguished Professor in both the computer science and statistics departments at UC Berkeley, and a Distinguished Amazon Scholar.

But Michael I. Jordan, the Pehong Chen Distinguished Professor in both the computer science and statistics departments at the University of California, Berkeley, and a Distinguished Amazon Scholar, thinks that that’s too narrow a concept of intelligence.

“Swarms of ants are intelligent, in the sense that they can build ant hills and share food, even though each individual ant is not thinking about hills or sharing,” Jordan says. “Economists have taken this perspective further, with their focus on the tasks accomplished by markets. Accomplishing those tasks is by some definition a reflection of intelligence. A market that brings food into, say, New York every day is an intelligent entity. It's akin to a brain, and it’s important to remember that a brain is a loosely coupled collection of neurons that are each performing relatively simple functions. Analogously, a bunch of loosely coupled decisions made by producers, suppliers, and consumers constitute a market that is a form of intelligence. A grand challenge is to marry this kind of intelligence with the form of intelligence that arises from learning from data.”

Jordan argues that distributed, social intelligence is better suited to meeting human needs than the type of autonomous general intelligence we associate with the Terminator movies or Marvel’s Ultron. By the same token, he says, AI’s goals should be formulated at the level of the collective, not the level of the individual agent.

Related content
Amazon Science hosts a conversation with Amazon Scholars Michael I. Jordan and Michael Kearns and Amazon distinguished scientist Bernhard Schölkopf.

“A good engineer is supposed to think about the overall goal of the system you’re building,” Jordan says. “If your overall goal is diffuse — create intelligence, and somehow it will solve problems — that's not good enough.

“What machine learning and network data do is bring people together in new ways to share data, to share services with each other, and to create new kinds of markets, new kinds of social collectives. Building systems like that is a perfectly reasonable engineering goal. Real-world examples are easy to find in domains such as transportation, commerce, health care. Those are not best analyzed as some super-intelligence coming in to help you solve problems. Rather, they're best analyzed as, Hey, we're designing a new system that has new kinds of data flows that were never present before and there’s a need to aggregate and integrate those flows in various ways, with the overall goal of serving individuals according to their utilities.”

New signals

At this year’s International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Jordan will elaborate on these ideas in a plenary talk titled “An alternative view on AI: Collaborative learning, incentives, and social welfare”. ICASSP might seem like an odd venue for so expansive a talk, but Jordan argues — again — that that’s only if you rely on an overly restricted definition.

Related content
Alexa scientist Ariya Rastrow on the blurring boundaries between acoustic processing and language understanding.

“You can make signal processing very narrow, and then it's, how do you do compression, how do you get high-fidelity recordings, and so on,” he says. “But those are all the engineering challenges of the past. In emerging domains, the notion of what constitutes a signal is broader. Signals are often coming from humans, and they often have semantic content. Moreover, when people interact with an economic relationship in mind, they signal to each other in various ways: What am I willing to pay for this? And what is someone else willing to pay? Markets are full of signals. Machine learning can create new vocabularies for signaling. 

“So part of the story here is going to be to say, hey, signal-processing folks, it's not just about the data and the algorithms and the statistics. It's about a broader conception of signals. Signal processing isn’t just about the processing and streaming of bits but about what these bits are being used for and what market forces they can set in motion. I definitely would hope to convince signal-processing people to think ambitiously about what the scope of the field can be.”

Statistical contract theory

One of the tools that Jordan and his Berkeley research group are using to make markets more intelligent is what they call statistical contract theory. Classical contract theory investigates markets with information asymmetries: for instance, a seller doesn’t know how potential buyers value a particular good, but the buyers themselves do.

Michael I. Jordan on AI, statistical contract theory, and prediction-powered inference.

The goal is to devise a menu of contracts that balances out the asymmetries. An example is tiered-class seating on airplanes: some customers will contract to pay higher fares for more room and better food; some customers will contract to forego those advantages in exchange for lower fares. The seller doesn’t have to know in advance which population is which; the populations are self-selecting.

In statistical contract theory, Jordan explains, the contracts have statistical analyses embedded within them. The example he likes to use is the drug approval process.

“The job of the regulatory agency is to decide which drugs go to market,” Jordan says. “And it's partially a statistical problem: You have a drug candidate, and it may or may not be effective on humans. You don't know a priori. So you do an A/B test. You bring in people, and you either give them the treatment, or you give them a control, and you see if there has been an improvement.

“The problem is that there are more players in this game. The drug candidates are not coming just from nature or from the agency itself. There are these third-party agents, which are the pharmaceutical companies, that are generating drug candidates. They can generate tens of thousands of them, which would be far too expensive to test.

“The agency has no idea whether a candidate is good or bad before they run their clinical trial. But the pharmaceutical company knows a little more. They know how they develop the candidates, and maybe they did some internal testing. So there you have your asymmetry. The agency can’t just ask the pharmaceutical company, Hey, is that candidate good or not? Because the pharmaceutical company is just hoping that it passes the screening and gets onto the market and they make some money.

Related content
Michael I. Jordan, Amazon Scholar and professor at the University of California, Berkeley, writes about the classical goals in human-imitative AI, and reflects on how in the current hubbub over the AI revolution it is easy to forget that these goals haven’t yet been achieved.

“The solution is something we call statistical contract theory, and hopefully, it will begin to emerge as a new field. The mathematical ingredients are again menus of options, including license fees, durations of licenses, sizes of the trials, and so on. And every drug company gets to look at that same menu for every possible drug. They make a selection, and then nature reveals an outcome via a clinical trial.

“In the selection process, the drug company is revealing something. The drug company says, hey, on this candidate drug, I know it's really good, so I'm going to take ‘business class’. And now you kind of revealed something to the agency. But the agency doesn't use that information directly; they set up a contract a priori, and you made your selection. We have a new mathematical theory that exactly addresses that kind of design problem and, hopefully, a range of other problems.”

Prediction-powered inference

Another tool that Jordan’s group has been developing is called prediction-powered inference.

“How do I use neural nets not just to make good predictions but to make good confidence intervals?” Jordan says. “The problem is that even if these predictions are very accurate, they still make big errors in some instances, and those can conspire to yield biased confidence intervals. We have this new technique called prediction-powered inference that addresses this problem.

“Classical bias correction would be just that I estimate the bias, and I correct the original estimate for the bias to get a more unbiased estimator. What we're doing is different. We're estimating not the bias but a confidence interval on all the possible biases. And then we're using that confidence interval to do all possible adjustments of the original value to get a confidence interval on the true parameter. So we don't just get a better predictive estimate; we get a whole confidence interval that has a high probability of covering the truth. It is able to use all of these biased predictions from the neural net and nonetheless provide an interval that has a guarantee of covering the truth. It's kind of almost magical that it can be done. But it can.”

Research areas

Related content

IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.