Michael I. Jordan, Amazon scholar and professor at the University of California, Berkeley
Michael I. Jordan, Amazon scholar and professor at the University of California, Berkeley
Credit: Flavia Loreto

Artificial Intelligence—The revolution hasn’t happened yet

Michael I. Jordan, Amazon scholar and professor at the University of California, Berkeley, writes about the classical goals in human-imitative AI, and reflects on how in the current hubbub over the AI revolution it is easy to forget that these goals haven’t yet been achieved. This article is reprinted with permission from the Harvard Data Science Review, where it first appeared.

Artificial Intelligence (AI) is the mantra of the current era. The phrase is intoned by technologists, academicians, journalists, and venture capitalists alike. As with many phrases that cross over from technical academic fields into general circulation, there is significant misunderstanding accompanying use of the phrase. However, this is not the classical case of the public not understanding the scientists—here the scientists are often as befuddled as the public. The idea that our era is somehow seeing the emergence of an intelligence in silicon that rivals our own entertains all of us, enthralling us and frightening us in equal measure. And, unfortunately, it distracts us.

There is a different narrative that one can tell about the current era. Consider the following story, which involves humans, computers, data, and life-or-death decisions, but where the focus is something other than intelligence-in-silicon fantasies. When my spouse was pregnant 14 years ago, we had an ultrasound. There was a geneticist in the room, and she pointed out some white spots around the heart of the fetus. “Those are markers for Down syndrome,” she noted, “and your risk has now gone up to one in 20.” She let us know that we could learn whether the fetus in fact had the genetic modification underlying Down syndrome via an amniocentesis, but amniocentesis was risky—the chance of killing the fetus during the procedure was roughly one in 300. Being a statistician, I was determined to find out where these numbers were coming from. In my research, I discovered that a statistical analysis had been done a decade previously in the UK in which these white spots, which reflect calcium buildup, were indeed established as a predictor of Down syndrome. I also noticed that the imaging machine used in our test had a few hundred more pixels per square inch than the machine used in the UK study. I returned to tell the geneticist that I believed that the white spots were likely false positives, literal white noise.

She said, “Ah, that explains why we started seeing an uptick in Down syndrome diagnoses a few years ago. That’s when the new machine arrived.”

We didn’t do the amniocentesis, and my wife delivered a healthy girl a few months later, but the episode troubled me, particularly after a back-of-the-envelope calculation convinced me that many thousands of people had gotten that diagnosis that same day worldwide, that many of them had opted for amniocentesis, and that a number of babies had died needlessly. The problem that this episode revealed wasn’t about my individual medical care; it was about a medical system that measured variables and outcomes in various places and times, conducted statistical analyses, and made use of the results in other situations. The problem had to do not just with data analysis per se, but with what database researchers call provenance—broadly, where did data arise, what inferences were drawn from the data, and how relevant are those inferences to the present situation? While a trained human might be able to work all of this out on a case-by-case basis, the issue was that of designing a planetary-scale medical system that could do this without the need for such detailed human oversight.

I’m also a computer scientist, and it occurred to me that the principles needed to build planetary-scale inference-and-decision-making systems of this kind, blending computer science with statistics, and considering human utilities, were nowhere to be found in my education. It occurred to me that the development of such principles—which will be needed not only in the medical domain but also in domains such as commerce, transportation, and education—were at least as important as those of building AI systems that can dazzle us with their game-playing or sensorimotor skills.

Whether or not we come to understand ‘intelligence’ any time soon, we do have a major challenge on our hands in bringing together computers and humans in ways that enhance human life. While some view this challenge as subservient to the creation of artificial intelligence, another more prosaic, but no less reverent, viewpoint is that it is the creation of a new branch of engineering. Much like civil engineering and chemical engineering in decades past, this new discipline aims to corral the power of a few key ideas, bringing new resources and capabilities to people, and to do so safely. Whereas civil engineering and chemical engineering built upon physics and chemistry, this new engineering discipline will build on ideas that the preceding century gave substance to, such as information, algorithm, data, uncertainty, computing, inference, and optimization. Moreover, since much of the focus of the new discipline will be on data from and about humans, its development will require perspectives from the social sciences and humanities.

While the building blocks are in place, the principles for putting these blocks together are not, and so the blocks are currently being put together in ad-hoc ways. Thus, just as humans built buildings and bridges before there was civil engineering, humans are proceeding with the building of societal-scale, inference-and-decision-making systems that involve machines, humans, and the environment. Just as early buildings and bridges sometimes fell to the ground—in unforeseen ways and with tragic consequences—many of our early societal-scale inference-and-decision-making systems are already exposing serious conceptual flaws.

Unfortunately, we are not very good at anticipating what the next emerging serious flaw will be. What we’re missing is an engineering discipline with principles of analysis and design.

The current public dialog about these issues too often uses the term AI as an intellectual wildcard, one that makes it difficult to reason about the scope and consequences of emerging technology. Let us consider more carefully what AI has been used to refer to, both recently and historically.

Most of what is labeled AI today, particularly in the public sphere, is actually machine learning (ML), a term in use for the past several decades. ML is an algorithmic field that blends ideas from statistics, computer science and many other disciplines (see below) to design algorithms that process data, make predictions, and help make decisions. In terms of impact on the real world, ML is the real thing, and not just recently. Indeed, that ML would grow into massive industrial relevance was already clear in the early 1990s, and by the turn of the century forward-looking companies such as Amazon were already using ML throughout their business, solving mission-critical, back-end problems in fraud detection and supply-chain prediction, and building innovative consumer-facing services such as recommendation systems. As datasets and computing resources grew rapidly over the ensuing two decades, it became clear that ML would soon power not only Amazon but essentially any company in which decisions could be tied to large-scale data. New business models would emerge. The phrase ‘data science’ emerged to refer to this phenomenon, reflecting both the need of ML algorithms experts to partner with database and distributed-systems experts to build scalable, robust ML systems, as well as reflecting the larger social and environmental scope of the resulting systems.This confluence of ideas and technology trends has been rebranded as ‘AI’ over the past few years. This rebranding deserves some scrutiny.

Historically, the phrase “artificial intelligence” was coined in the late 1950s to refer to the heady aspiration of realizing in software and hardware an entity possessing human-level intelligence. I will use the phrase “human-imitative AI” to refer to this aspiration, emphasizing the notion that the artificially intelligent entity should seem to be one of us, if not physically then at least mentally (whatever that might mean). This was largely an academic enterprise. While related academic fields such as operations research, statistics, pattern recognition, information theory, and control theory already existed, and often took inspiration from human or animal behavior, these fields were arguably focused on low-level signals and decisions. The ability of, say, a squirrel to perceive the three-dimensional structure of the forest it lives in, and to leap among its branches, was inspirational to these fields. AI was meant to focus on something different: the high-level or cognitive capability of humans to reason and to think. Sixty years later, however, high-level reasoning and thought remain elusive. The developments now being called AI arose mostly in the engineering fields associated with low-level pattern recognition and movement control, as well as in the field of statistics, the discipline focused on finding patterns in data and on making well-founded predictions, tests of hypotheses, and decisions.

Indeed, the famous backpropagation algorithm that David Rumelhart rediscovered in the early 1980s, and which is now considered at the core of the so-called “AI revolution,” first arose in the field of control theory in the 1950s and 1960s. One of its early applications was to optimize the thrusts of the Apollo spaceships as they headed towards the moon.

Since the 1960s, much progress has been made, but it has arguably not come about from the pursuit of human-imitative AI. Rather, as in the case of the Apollo spaceships, these ideas have often hidden behind the scenes, the handiwork of researchers focused on specific engineering challenges. Although not visible to the general public, research and systems-building in areas such as document retrieval, text classification, fraud detection, recommendation systems, personalized search, social network analysis, planning, diagnostics, and A/B testing have been a major success—these advances have powered companies such as Google, Netflix, Facebook, and Amazon.

One could simply refer to all of this as AI, and indeed that is what appears to have happened. Such labeling may come as a surprise to optimization or statistics researchers, who find themselves suddenly called AI researchers, but labels aside, the bigger problem is that the use of this single, ill-defined acronym prevents a clear understanding of the range of intellectual and commercial issues at play.

The past two decades have seen major progress—in industry and academia—in a complementary aspiration to human-imitative AI that is often referred to as “Intelligence Augmentation” (IA). Here computation and data are used to create services that augment human intelligence and creativity. A search engine can be viewed as an example of IA, as it augments human memory and factual knowledge, as can natural language translation, which augments the ability of a human to communicate. Computer-based generation of sounds and images serves as a palette and creativity enhancer for artists. While services of this kind could conceivably involve high-level reasoning and thought, currently they don’t; they mostly perform various kinds of string-matching and numerical operations that capture patterns that humans can make use of.

Hoping that the reader will tolerate one last acronym, let us conceive broadly of a discipline of “Intelligent Infrastructure” (II), whereby a web of computation, data, and physical entities exists that makes human environments more supportive, interesting, and safe. Such infrastructure is beginning to make its appearance in domains such as transportation, medicine, commerce, and finance, with implications for individual humans and societies. This emergence sometimes arises in conversations about an Internet of Things, but that effort generally refers to the mere problem of getting ‘things’ onto the Internet, not to the far grander set of challenges associated with building systems that analyze those data streams to discover facts about the world and permit ‘things’ to interact with humans at a far higher level of abstraction than mere bits.

For example, returning to my personal anecdote, we might imagine living our lives in a societal-scale medical system that sets up data flows and data-analysis flows between doctors and devices positioned in and around human bodies, thereby able to aid human intelligence in making diagnoses and providing care. The system would incorporate information from cells in the body, DNA, blood tests, environment, population genetics, and the vast scientific literature on drugs and treatments. It would not just focus on a single patient and a doctor, but on relationships among all humans, just as current medical testing allows experiments done on one set of humans (or animals) to be brought to bear in the care of other humans. It would help maintain notions of relevance, provenance, and reliability, in the way that the current banking system focuses on such challenges in the domain of finance and payment. While one can foresee many problems arising in such a system—privacy issues, liability issues, security issues, etc.—these concerns should be viewed as challenges, not show-stoppers.

We now come to a critical issue: is working on classical human-imitative AI the best or only way to focus on these larger challenges? Some of the most heralded recent success stories of ML have in fact been in areas associated with human-imitative AI—areas such as computer vision, speech recognition, game-playing, and robotics. Perhaps we should simply await further progress in domains such as these. There are two points to make here. First, although one would not know it from reading the newspapers, success in human-imitative AI has in fact been limited; we are very far from realizing human-imitative AI aspirations. The thrill (and fear) of making even limited progress on human-imitative AI gives rise to levels of over-exuberance and media attention that is not present in other areas of engineering.

Second, and more importantly, success in these domains is neither sufficient nor necessary to solve important IA and II problems. On the sufficiency side, consider self-driving cars. For such technology to be realized, a range of engineering problems will need to be solved that may have little relationship to human competencies (or human lack-of-competencies). The overall transportation system (an II system) will likely more closely resemble the current air-traffic control system than the current collection of loosely coupled, forward-facing, inattentive human drivers. It will be vastly more complex than the current air-traffic control system, specifically in its use of massive amounts of data and adaptive statistical modeling to inform fine-grained decisions. Those challenges need to be in the forefront versus a potentially distracting focus on human-imitative AI.

As for the necessity argument, some say that the human-imitative AI aspiration subsumes IA and II aspirations, because a human-imitative AI system would not only be able to solve the classical problems of AI (e.g., as embodied in the Turing test), but it would also be our best bet for solving IA and II problems. Such an argument has little historical precedent. Did civil engineering develop by envisaging the creation of an artificial carpenter or bricklayer? Should chemical engineering have been framed in terms of creating an artificial chemist? Even more polemically: if our goal was to build chemical factories, should we have first created an artificial chemist who would have then worked out how to build a chemical factory?

A related argument is that human intelligence is the only kind of intelligence we know, thus we should aim to mimic it as a first step. However, humans are in fact not very good at some kinds of reasoning—we have our lapses, biases, and limitations. Moreover, critically, we did not evolve to perform the kinds of large-scale decision-making that modern II systems must face, nor to cope with the kinds of uncertainty that arise in II contexts. One could argue that an AI system would not only imitate human intelligence, but also correct it, and would also scale to arbitrarily large problems. Of course, we are now in the realm of science fiction—such speculative arguments, while entertaining in the setting of fiction, should not be our principal strategy going forward in the face of the critical IA and II problems that are beginning to emerge. We need to solve IA and II problems on their own merits, not as a mere corollary to a human-imitative AI agenda.

It is not hard to pinpoint algorithmic and infrastructure challenges in II systems that are not central themes in human-imitative AI research. II systems require the ability to manage distributed repositories of knowledge that are rapidly changing and are likely to be globally incoherent. Such systems must cope with cloud-edge interactions in making timely, distributed decisions, and they must deal with long-tail phenomena where there is lots of data on some individuals and little data on most individuals. They must address the difficulties of sharing data across administrative and competitive boundaries. Finally, and of particular importance, II systems must bring economic ideas such as incentives and pricing into the realm of the statistical and computational infrastructures that link humans to each other and to valued goods. Such II systems can be viewed as not merely providing a service, but as creating markets. There are domains such as music, literature, and journalism that are crying out for the emergence of such markets, where data analysis links producers and consumers. And this must all be done within the context of evolving societal, ethical, and legal norms.

Of course, classical human-imitative AI problems remain of great interest as well. However, the current focus on doing AI research via the gathering of data, the deployment of deep learning infrastructure, and the demonstration of systems that mimic certain narrowly defined human skills—with little in the way of emerging explanatory principles—tends to deflect attention from major open problems in classical AI. These problems include the need to bring meaning and reasoning into systems that perform natural language processing, the need to infer and represent causality, the need to develop computationally tractable representations of uncertainty and the need to develop systems that formulate and pursue long-term goals. These are classical goals in human-imitative AI, but in the current hubbub over the AI revolution it is easy to forget that they are not yet solved.

IA will also remain quite essential, because for the foreseeable future, computers will not be able to match humans in their ability to reason abstractly about real-world situations. We will need well-thought-out interactions of humans and computers to solve our most pressing problems. And we will want computers to trigger new levels of human creativity, not replace human creativity (whatever that might mean).

It was John McCarthy (while a professor at Dartmouth, and soon to take a position at MIT) who coined the term AI, apparently to distinguish his budding research agenda from that of Norbert Wiener (then an older professor at MIT). Wiener had coined “cybernetics” to refer to his own vision of intelligent systems—a vision that was closely tied to operations research, statistics, pattern recognition, information theory, and control theory. McCarthy, on the other hand, emphasized the ties to logic. In an interesting reversal, it is Wiener’s intellectual agenda that has come to dominate in the current era, under the banner of McCarthy’s terminology. (This state of affairs is surely, however, only temporary; the pendulum swings more in AI than in most fields.)

Beyond the historical perspectives of McCarthy and Wiener, we need to realize that the current public dialog on AI—which focuses on narrow subsets of both industry and of academia—risks blinding us to the challenges and opportunities that are presented by the full scope of AI, IA, and II.

This scope is less about the realization of science-fiction dreams or superhuman nightmares, and more about the need for humans to understand and shape technology as it becomes ever more present and influential in their daily lives. Moreover, in this understanding and shaping, there is a need for a diverse set of voices from all walks of life, not merely a dialog among the technologically attuned. Focusing narrowly on human-imitative AI prevents an appropriately wide range of voices from being heard.

While industry will drive many developments, academia will also play an essential role, not only in providing some of the most innovative technical ideas, but also in bringing researchers from the computational and statistical disciplines together with researchers from other disciplines whose contributions and perspectives are sorely needed—notably the social sciences, the cognitive sciences, and the humanities.

On the other hand, while the humanities and the sciences are essential as we go forward, we should also not pretend that we are talking about something other than an engineering effort of unprecedented scale and scope; society is aiming to build new kinds of artifacts. These artifacts should be built to work as claimed. We do not want to build systems that help us with medical treatments, transportation options, and commercial opportunities only to find out after the fact that these systems don’t really work, that they make errors that take their toll in terms of human lives and happiness. In this regard, as I have emphasized, there is an engineering discipline yet to emerge for the data- and learning-focused fields. As exciting as these latter fields appear to be, they cannot yet be viewed as constituting an engineering discipline.

We should embrace the fact that we are witnessing the creation of a new branch of engineering. The term engineering has connotations—in academia and beyond—of cold, affectless machinery, and of loss of control for humans, but an engineering discipline can be what we want it to be. In the current era, we have a real opportunity to conceive of something historically new: a human-centric engineering discipline. I will resist giving this emerging discipline a name, but if the acronym AI continues to serve as placeholder nomenclature going forward, let’s be aware of the very real limitations of this placeholder. Let’s broaden our scope, tone down the hype, and recognize the serious challenges ahead.

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques