Invalidating robotic ad clicks in real time

Slice-level detection of robots (SLIDR) uses deep-learning and optimization techniques to ensure that advertisers aren’t charged for robotic or fraudulent ad clicks.

Robotic-ad-click detection is the task of determining whether an ad click on an e-commerce website was initiated by a human or a software agent. Its goal is to ensure that advertisers’ campaigns are not billed for robotic activity and that human clicks are not invalidated. It must act in real time, to cause minimal disruption to the advertiser experience, and it must be scalable, comprehensive, precise, and able to respond rapidly to changing traffic patterns.

At this year’s Conference on Innovative Applications of Artificial Intelligence (IAAI) — part of AAAI, the annual meeting of the Association for the Advancement of Artificial Intelligence — we presented SLIDR, or SLIce-Level Detection of Robots, a real-time deep-neural-network model trained with weak supervision to identify invalid clicks on online ads. SLIDR has been deployed on Amazon since 2021, safeguarding advertiser campaigns against robotic clicks.

Related content
Paper introduces a unified view of the learning-to-bid problem and presents AuctionGym, a simulation environment that enables reproducible validation of new solutions.

In the paper, we formulate a convex optimization problem that enables SLIDR to achieve optimal performance on individual traffic slices, with a budget of overall false positives. We also describe our system design, which enables continuous offline retraining and large-scale real-time inference, and we share some of the important lessons we’ve learned from deploying SLIDR, including the use of guardrails to prevent updates of anomalous models and disaster recovery mechanisms to mitigate or correct decisions made by a faulty model.

Challenges

Detecting robotic activity in online advertising faces various challenges: (1) precise ground-truth labels with high coverage are hard to come by; (2) bot behavior patterns are continuously evolving; (3) bot behavior patterns vary significantly across different traffic slices (e.g., desktop vs, mobile); and (4) false positives reduce ad revenue.

Labels

Since accurate ground truth is unavailable at scale, we generate data labels by identifying two high-hurdle activities that are very unlikely to be performed by a bot: (1) ad clicks that lead to purchases and (2) ad clicks from customer accounts with high RFM scores. RFM scores represent the recency (R), frequency (F), and monetary (M) value of customers’ purchasing patterns on Amazon. Clicks of either sort are labeled as human; all remaining clicks are marked as non-human.

Metrics

Due to the lack of reliable ground truth labels, typical metrics such as accuracy cannot be used to evaluate the model performance. So we turn to a trio of more-specific metrics.

Related content
Amazon VP and chief economist for digital streaming and advertising Phil Leslie on economists’ role in industry.

Invalidation rate (IVR) is defined as the fraction of total clicks marked as robotic by the algorithm. IVR is indicative of the recall of our model, since a model with a higher IVR is more likely to invalidate robotic clicks.

On its own, however, IVR can be misleading, since a poorly performing model will invalidate human and robot clicks. Hence we measure IVR in conjunction with the false-positive rate (FPR). We consider purchasing clicks as a proxy for the distribution of human clicks and define FPR as the fraction of purchasing clicks invalidated by the algorithm. Here, we make two assumptions: (1) all purchasing clicks are human, and (2) purchasing clicks are a representative sample of all human clicks.

We also define a more precise variant of recall by checking the model’s coverage over a heuristic that identifies clicks with a high likelihood to be robotic. The heuristic labels all clicks in user sessions with more than k ad clicks in an hour as robotic. We call this metric robotic coverage.

A neural model for detecting bots

We consider various input features for our model that will enable it to disambiguate robotic and human behavior:

  1. User-level frequency and velocity counters compute volumes and rates of clicks from users over various time periods. These enable identification of emergent robotic attacks that involve sudden bursts of clicks.
  2. User entity counters keep track of statistics such as number of distinct sessions or users from an IP. These features help to identify IP addresses that may be gateways with many users behind them.
  3. Time of click tracks hour of day and day of week, which are mapped to a unit circle. Although human activity follows diurnal and weekly activity patterns, robotic activity often does not.
  4. Logged-in status differentiates between customers and non-logged-in sessions as we expect a lot more robotic traffic in the latter.

The neural network is a binary classifier consisting of three fully connected layers with ReLU activations and L2 regularization in the intermediate layers.

DNN architecture.png
Neural-network architecture.

While training our model, we use sample weights that weigh clicks equivalently across hour of day, day of the week, logged-in status, and the label value. We have found sample weights to be crucial in improving the model’s performance and stability, especially with respect to sparse data slices such as night hours.

Baseline comparison.png
Baseline comparison.

We compare our model against baselines such as logistic regression and a heuristic rule that computes velocity scores of clicks. Both the baselines lack the ability to model complex patterns and hence are unable to perform as well as the neural network.

Calibration

Calibration involves choosing a threshold for the model’s output probability above which all clicks are marked as invalid. The model should invalidate certain highly robotic clicks but at the same time not incur high revenue loss by invalidating human clicks. Toward this, one option is to pick the “knee” of the IVR-FPR curve, beyond which the false positive rate increases sharply when compared to the increase in IVR.

Full traffic.png
IVR-FPR curve of full traffic.

But calibrating the model across all traffic slices together leads to different behaviors for different slices. For example, a decision threshold obtained via overall calibration, when applied to the desktop slice, could be undercalibrated: a lower probability threshold could invalidate more bots. Similarly, when the global decision threshold is applied to the mobile slice, it could be overcalibrated: a higher probability threshold might be able to recover some revenue loss without compromising on the bot coverage.

To ensure fairness across all traffic slices, we formulate calibration as a convex optimization problem. We perform joint optimization across all slices by fixing an overall FPR budget (an upper limit to the FPR of all slices combined) and solve to maximize the combined IVR on all slices together. The optimization must meet two conditions: (1) each slice has a minimum robotic coverage, which establishes a lower found for its FPR, and (2) the combined FPR of all slices should not exceed the FPR budget.

Traffic slices.png
IVR-FPR curve of traffic slices.

Since the IVR-FPR curve of each slice can be approximated as a quadratic function of the FPR, solving the joint optimization problem finds appropriate values for each slice. We have found slice-level calibration to be crucial in lowering overall FPR and increasing robotic coverage.

Deployment

To quickly adapt to changing bot patterns, we built an offline system that retrains and recalibrates the model on a daily basis. For incoming traffic requests, the real-time component computes the feature values using a combination of Redis and read-only DB caches and runs the neural-network inference on a horizontally scalable fleet of GPU instances. To meet the real-time constraint, the entire inference service, which runs on AWS, has a p99.9 latency below five milliseconds.

SLIDR architecture 16x9.png
The SLIDR system design.

To address data and model anomalies during retraining and recalibration, we put certain guardrails on the input training data and the model performance. For example, when purchase labels are missing for a few hours, the model can learn to invalidate a large amount of traffic. Guardrails such as minimum human density in every hour of a week prevent such behavior.

Related content
Expo cochair and Amazon scientist Alice Zheng on the respective strengths of industry and academic machine learning research.

We have also developed disaster recovery mechanisms such as quick rollbacks to a previously stable model when a sharp metric deviation is observed and a replay tool that can replay traffic through a previously stable model or recompute real-time features and publish delayed decisions, which help prevent high-impact events.

In the future, we plan to add more features to the model, such as learned representations for users, IPs, UserAgents, and search queries. We presented our initial work in that direction in our NeurIPS 2022 paper, “Self supervised pre-training for large scale tabular data”. We also plan to experiment with advanced neural architectures such as deep and cross-networks, which can effectively capture feature interactions in tabular data.

Acknowledgements: Muneeb Ahmed

Related content

US, VA, Arlington
As a Survey Research Scientist within the Reputation Marketing & Insights team, your primary responsibility will be to help manage our employee communications research program, including a global tracking survey. The work will challenge you to be resourceful, think big while staying connected to the details, translate survey, focus group results, and advanced analytics into strategic direction, and embrace a high degree of change and ambiguity at speed. The scope and scale of what we strive to achieve is immense, but it is also meaningful and energizing. This is an individual contributor role. The right candidate possesses endless curiosity and passion for understanding employee perceptions and what drives them. You have end-to-end experience conducting qualitative research, robust large-scale surveys, campaign measurement, as well as advanced modeling skills to uncover perception drivers. You have proficiency in diving deep into large amounts of data and translating research into actionable insights/recommendations for internal communicators. You are an excellent writer who can effectively communicate data-driven insights and recommendations through written documents, presentations, and other internal communication channels. You are a creative problem-solver who seeks to deeply understand the business/communications so you can tailor research that informs stakeholder decision making and strategic messaging tactics. Key job responsibilities - Design and manage the execution of a global tracking survey focused on employee communications - Develop research to identify and test messages to drive employee perceptions - Use advanced statistical methodologies to better understand the relationship between key internal communications metrics and other related measures of perception (e.g., regression, structural equation modeling, latent growth curve modeling, Shapley analysis, etc.) - Develop causal and semi-causal measurement techniques to evaluate the perception impact of internal communications campaigns - Identify opportunities to simplify existing research processes and operate more nimbly - Engage in strategic discussions with internal partner teams to ensure our research generates actionable and on-point findings About the team This team sits within the CCR organization. Our focus is on conducting research that identifies messaging opportunities and informs communication strategies for Amazon as a brand.
US, CA, Santa Clara
Want to work on frontier, world class, AI-powered experiences for health customers and health providers? The Health Science & Analytics group in Amazon's Health Store & Technology organization is looking for a Senior Manager of Applied Science to lead a group of applied scientists and engineers to work hand in hand with physicians to build the future of AI-powered healthcare experiences. We have an ambitious roadmap which includes scaling recently launched products which are already delighting products and the opportunity to build disruptive, new experiences. This role will be responsible for leading the science and technology teams driving these key innovations on behalf of our customers. Key job responsibilities - Independently manage a team of scientists and engineers to sustainably deliver science driven products. - Define the vision and long-term technical roadmap to achieve multi-year business objectives. - Maintain and raise the science bar of the team’s deliverables and keep the broader Amazon Health Services organization apprised of the latest relevant technical developments in the field. - Work across business, clinical, and technical leaders to disambiguate product requirements and socialize progress towards key goals and deliverables. - Proactively identify risks and shape the technical roadmap in anticipation of industry trends in emerging AI subfields.
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
IN, KA, Bengaluru
AWS Infrastructure Services owns the design, planning, delivery, and operation of all AWS global infrastructure. In other words, we’re the people who keep the cloud running. We support all AWS data centers and all of the servers, storage, networking, power, and cooling equipment that ensure our customers have continual access to the innovation they rely on. We work on the most challenging problems, with thousands of variables impacting the supply chain — and we’re looking for talented people who want to help. You’ll join a diverse team of software, hardware, and network engineers, supply chain specialists, security experts, operations managers, and other vital roles. You’ll collaborate with people across AWS to help us deliver the highest standards for safety and security while providing seemingly infinite capacity at the lowest possible cost for our customers. And you’ll experience an inclusive culture that welcomes bold ideas and empowers you to own them to completion. Do you love problem solving? Are you looking for real world Supply Chain challenges? Do you have a desire to make a major contribution to the future, in the rapid growth environment of Cloud Computing? Amazon Web Services is looking for a highly motivated, Data Scientist to help build scalable, predictive and prescriptive business analytics solutions that supports AWS Supply Chain and Procurement organization. You will be part of the Supply Chain Analytics team working with Global Stakeholders, Data Engineers, Business Intelligence Engineers and Business Analysts to achieve our goals. We are seeking an innovative and technically strong data scientist with a background in optimization, machine learning, and statistical modeling/analysis. This role requires a team member to have strong quantitative modeling skills and the ability to apply optimization/statistical/machine learning methods to complex decision-making problems, with data coming from various data sources. The candidate should have strong communication skills, be able to work closely with stakeholders and translate data-driven findings into actionable insights. The successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and ability to work in a fast-paced and ever-changing environment. Key job responsibilities 1. Demonstrate thorough technical knowledge on feature engineering of massive datasets, effective exploratory data analysis, and model building using industry standard time Series Forecasting techniques like ARIMA, ARIMAX, Holt Winter and formulate ensemble model. 2. Proficiency in both Supervised(Linear/Logistic Regression) and UnSupervised algorithms(k means clustering, Principle Component Analysis, Market Basket analysis). 3. Experience in solving optimization problems like inventory and network optimization . Should have hands on experience in Linear Programming. 4. Work closely with internal stakeholders like the business teams, engineering teams and partner teams and align them with respect to your focus area 5. Detail-oriented and must have an aptitude for solving unstructured problems. You should work in a self-directed environment, own tasks and drive them to completion. 6. Excellent business and communication skills to be able to work with business owners to develop and define key business questions and to build data sets that answer those questions 7. Work with distributed machine learning and statistical algorithms to harness enormous volumes of data at scale to serve our customers About the team Diverse Experiences Amazon values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship and Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team