Invalidating robotic ad clicks in real time

Slice-level detection of robots (SLIDR) uses deep-learning and optimization techniques to ensure that advertisers aren’t charged for robotic or fraudulent ad clicks.

Robotic-ad-click detection is the task of determining whether an ad click on an e-commerce website was initiated by a human or a software agent. Its goal is to ensure that advertisers’ campaigns are not billed for robotic activity and that human clicks are not invalidated. It must act in real time, to cause minimal disruption to the advertiser experience, and it must be scalable, comprehensive, precise, and able to respond rapidly to changing traffic patterns.

At this year’s Conference on Innovative Applications of Artificial Intelligence (IAAI) — part of AAAI, the annual meeting of the Association for the Advancement of Artificial Intelligence — we presented SLIDR, or SLIce-Level Detection of Robots, a real-time deep-neural-network model trained with weak supervision to identify invalid clicks on online ads. SLIDR has been deployed on Amazon since 2021, safeguarding advertiser campaigns against robotic clicks.

Related content
Paper introduces a unified view of the learning-to-bid problem and presents AuctionGym, a simulation environment that enables reproducible validation of new solutions.

In the paper, we formulate a convex optimization problem that enables SLIDR to achieve optimal performance on individual traffic slices, with a budget of overall false positives. We also describe our system design, which enables continuous offline retraining and large-scale real-time inference, and we share some of the important lessons we’ve learned from deploying SLIDR, including the use of guardrails to prevent updates of anomalous models and disaster recovery mechanisms to mitigate or correct decisions made by a faulty model.

Challenges

Detecting robotic activity in online advertising faces various challenges: (1) precise ground-truth labels with high coverage are hard to come by; (2) bot behavior patterns are continuously evolving; (3) bot behavior patterns vary significantly across different traffic slices (e.g., desktop vs, mobile); and (4) false positives reduce ad revenue.

Labels

Since accurate ground truth is unavailable at scale, we generate data labels by identifying two high-hurdle activities that are very unlikely to be performed by a bot: (1) ad clicks that lead to purchases and (2) ad clicks from customer accounts with high RFM scores. RFM scores represent the recency (R), frequency (F), and monetary (M) value of customers’ purchasing patterns on Amazon. Clicks of either sort are labeled as human; all remaining clicks are marked as non-human.

Metrics

Due to the lack of reliable ground truth labels, typical metrics such as accuracy cannot be used to evaluate the model performance. So we turn to a trio of more-specific metrics.

Related content
Amazon VP and chief economist for digital streaming and advertising Phil Leslie on economists’ role in industry.

Invalidation rate (IVR) is defined as the fraction of total clicks marked as robotic by the algorithm. IVR is indicative of the recall of our model, since a model with a higher IVR is more likely to invalidate robotic clicks.

On its own, however, IVR can be misleading, since a poorly performing model will invalidate human and robot clicks. Hence we measure IVR in conjunction with the false-positive rate (FPR). We consider purchasing clicks as a proxy for the distribution of human clicks and define FPR as the fraction of purchasing clicks invalidated by the algorithm. Here, we make two assumptions: (1) all purchasing clicks are human, and (2) purchasing clicks are a representative sample of all human clicks.

We also define a more precise variant of recall by checking the model’s coverage over a heuristic that identifies clicks with a high likelihood to be robotic. The heuristic labels all clicks in user sessions with more than k ad clicks in an hour as robotic. We call this metric robotic coverage.

A neural model for detecting bots

We consider various input features for our model that will enable it to disambiguate robotic and human behavior:

  1. User-level frequency and velocity counters compute volumes and rates of clicks from users over various time periods. These enable identification of emergent robotic attacks that involve sudden bursts of clicks.
  2. User entity counters keep track of statistics such as number of distinct sessions or users from an IP. These features help to identify IP addresses that may be gateways with many users behind them.
  3. Time of click tracks hour of day and day of week, which are mapped to a unit circle. Although human activity follows diurnal and weekly activity patterns, robotic activity often does not.
  4. Logged-in status differentiates between customers and non-logged-in sessions as we expect a lot more robotic traffic in the latter.

The neural network is a binary classifier consisting of three fully connected layers with ReLU activations and L2 regularization in the intermediate layers.

DNN architecture.png
Neural-network architecture.

While training our model, we use sample weights that weigh clicks equivalently across hour of day, day of the week, logged-in status, and the label value. We have found sample weights to be crucial in improving the model’s performance and stability, especially with respect to sparse data slices such as night hours.

Baseline comparison.png
Baseline comparison.

We compare our model against baselines such as logistic regression and a heuristic rule that computes velocity scores of clicks. Both the baselines lack the ability to model complex patterns and hence are unable to perform as well as the neural network.

Calibration

Calibration involves choosing a threshold for the model’s output probability above which all clicks are marked as invalid. The model should invalidate certain highly robotic clicks but at the same time not incur high revenue loss by invalidating human clicks. Toward this, one option is to pick the “knee” of the IVR-FPR curve, beyond which the false positive rate increases sharply when compared to the increase in IVR.

Full traffic.png
IVR-FPR curve of full traffic.

But calibrating the model across all traffic slices together leads to different behaviors for different slices. For example, a decision threshold obtained via overall calibration, when applied to the desktop slice, could be undercalibrated: a lower probability threshold could invalidate more bots. Similarly, when the global decision threshold is applied to the mobile slice, it could be overcalibrated: a higher probability threshold might be able to recover some revenue loss without compromising on the bot coverage.

To ensure fairness across all traffic slices, we formulate calibration as a convex optimization problem. We perform joint optimization across all slices by fixing an overall FPR budget (an upper limit to the FPR of all slices combined) and solve to maximize the combined IVR on all slices together. The optimization must meet two conditions: (1) each slice has a minimum robotic coverage, which establishes a lower found for its FPR, and (2) the combined FPR of all slices should not exceed the FPR budget.

Traffic slices.png
IVR-FPR curve of traffic slices.

Since the IVR-FPR curve of each slice can be approximated as a quadratic function of the FPR, solving the joint optimization problem finds appropriate values for each slice. We have found slice-level calibration to be crucial in lowering overall FPR and increasing robotic coverage.

Deployment

To quickly adapt to changing bot patterns, we built an offline system that retrains and recalibrates the model on a daily basis. For incoming traffic requests, the real-time component computes the feature values using a combination of Redis and read-only DB caches and runs the neural-network inference on a horizontally scalable fleet of GPU instances. To meet the real-time constraint, the entire inference service, which runs on AWS, has a p99.9 latency below five milliseconds.

SLIDR architecture 16x9.png
The SLIDR system design.

To address data and model anomalies during retraining and recalibration, we put certain guardrails on the input training data and the model performance. For example, when purchase labels are missing for a few hours, the model can learn to invalidate a large amount of traffic. Guardrails such as minimum human density in every hour of a week prevent such behavior.

Related content
Expo cochair and Amazon scientist Alice Zheng on the respective strengths of industry and academic machine learning research.

We have also developed disaster recovery mechanisms such as quick rollbacks to a previously stable model when a sharp metric deviation is observed and a replay tool that can replay traffic through a previously stable model or recompute real-time features and publish delayed decisions, which help prevent high-impact events.

In the future, we plan to add more features to the model, such as learned representations for users, IPs, UserAgents, and search queries. We presented our initial work in that direction in our NeurIPS 2022 paper, “Self supervised pre-training for large scale tabular data”. We also plan to experiment with advanced neural architectures such as deep and cross-networks, which can effectively capture feature interactions in tabular data.

Acknowledgements: Muneeb Ahmed

Related content

US, MA, North Reading
At Amazon Robotics, we design advanced robotic systems capable of intelligent perception, learning, and action alongside humans, all on a large scale. Our goal is to develop robots that increase productivity and efficiency at the Amazon fulfillment centers while ensuring the safety of workers. We are seeking an Applied Scientist to develop innovative, scalable solutions in feedback control and state estimation for robotic systems, with a focus on contact-rich manipulation tasks. In this role, you will formulate physics-based models of robotic systems, perform analytical and numerical studies, and design control and estimation algorithms that integrate fundamental principles with data-driven techniques. You will collaborate with a world-class team of experts in perception, machine learning, motion planning, and feedback controls to innovate and develop solutions for complex real-world problems. As part of your work, you will investigate applicable academic and industry research to develop, implement, and test solutions that support product features. You will also design and validate production designs. To succeed in this role, you should demonstrate a strong working knowledge of physical systems, a desire to learn from new challenges, and the problem-solving and communication skills to work within a highly interactive and experienced team. Candidates must show a hands-on passion for their work and the ability to communicate their ideas and concepts both verbally and visually. Key job responsibilities - Research, design, implement, and evaluate feedback control, estimation, and motion-planning algorithms, ensuring effective integration with perception, manipulation, and system-level components. - Develop experiments, simulations, and hardware prototypes to validate control algorithms, and optimization techniques in contact-rich manipulation and other challenging scenarios. - Collaborate with software engineering teams to enable scalable, real-time, and maintainable implementations of algorithms in production systems. - Partner with cross-functional teams across hardware, systems engineering, science, and operations to transition algorithms from early prototyping to robust, production-ready solutions. - Engage with stakeholders at all levels to iterate on system design, define requirements, and drive integration of control and estimation capabilities into Amazon Robotics platforms. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Own thermal design for consumer electronics products at the system level, proposing thermal architecture and aligning with functional leads - Perform CFD simulations using tools such as Star-CCM+ or FloEFD to assess thermal feasibility, identify risks, and propose mitigation options - Generate data processing, statistical analysis, and test automation scripts to improve data consistency, insight quality, and team efficiency - Plan and execute thermal validation activities for devices and SoC packages, including test setup definition, data review, and issue tracking - Work closely with cross-functional and cross-geo teams to support product decisions, generate thermal specifications, and align on thermal requirements - Prepare clear summaries and reports on thermal results, risks, and observations for review by cross-functional leads About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
CA, ON, Toronto
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through cutting-edge generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities • Collaborate with business, engineering and science leaders to establish science optimization and monetization roadmap for Amazon Retail Ad Service • Drive alignment across organizations for science, engineering and product strategy to achieve business goals • Lead/guide scientists and engineers across teams to develop, test, launch and improve of science models designed to optimize the shopper experience and deliver long term value for Amazon advertisers and third party retailers • Develop state of the art experimental approaches and ML models to keep up with our growing needs and diverse set of customers. • Participate in the Science hiring process as well as mentor other scientists - improving their skills, their knowledge of your solutions, and their ability to get things done. About the team Amazon Retail Ad Service within Sponsored Products and Brands is an ad-tech solution that enables retailers to monetize their online web and app traffic by displaying contextually relevant sponsored products ads. Our mission is to provide retailers with ad-solution for every type of supply to meet their advertising goals. At the same time, enable advertisers to manage their demand across multiple supplies (Amazon, offsite, third-party retailers) leveraging tools they are already familiar with. Our problem space is challenging and exciting in terms of different traffic patterns, varying product catalogs based on retailer industry and their shopper behaviors.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
US, VA, Herndon
This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. The Amazon Web Services Professional Services (ProServe) team is seeking an experienced Delivery Practice Manager (DPM) to join our ProServe Shared Delivery Team (SDT) at Amazon Web Services (AWS). In this role, you'll manage a team of ProServe Delivery Consultants while supporting AWS enterprise customers through transformative projects. You'll leverage your IT and/or Management Consulting background to serve as a strategic advisor to customers, partners, and internal AWS teams. As a DPM you will be responsible for building and managing a team of Delivery Consultants and/or Engagement Managers working with customers and partners to architect and implement innovative solutions. You’ll routinely engage with Director, C-level executives, and governing boards, whilst being responsible for opportunity capture and driving engagement delivery. You’ll work closely with partner teams; drive business development initiatives through thought leadership; provide portfolio guidance and oversight; and meet and exceed customer satisfaction targets. As a DPM you are primarily focused directly or through their teams, on understanding and defining business outcomes for customers by building trust, identifying applicable AWS Professional Services offerings, and creating proposals and SOW’s. Your experience gained leading teams within the technology sector, will equip you with the ability to optimize team performance through implementing tailored people development plans, ensuring your teams are aligned to customer needs, and have the skills and capacity to address customer outcomes. Possessing the ability to translate technical concepts into business value for customers and then talk in technical depth with teams, you will cultivate strong customer, Amazon Global Sales (AGS), and ProServe team relationships which enables exceptional business performance. DPMs success is primarily measured by consistently delivering customer engagements by supporting sales through scoping technical requirements for an engagement, delivering engagements on time, within budget, and exceeding customer expectations. They will hold the Practice total utilization goal and be responsible for optimizing team performance. The AWS Professional Services organization is a global team of experts that help customers realize their desired business outcomes when using the AWS Cloud. We work together with customer teams and the AWS Partner Network (APN) to execute enterprise cloud computing initiatives. Our team provides assistance through a collection of offerings which help customers achieve specific outcomes related to enterprise cloud adoption. We also deliver focused guidance through our global specialty practices, which cover a variety of solutions, technologies, and industries. Key job responsibilities • Building and managing a high-performing team of Delivery Consultants • Collaborating with Delivery Consultants, Engagement Managers, Account Executives, and Cloud Architects to deploy solutions and provide input on new features • Developing and overseeing the implementation of innovative, forward-looking IT strategies for customers • Managing practice P&L, ensuring on-time and within-budget delivery of customer engagements • Driving business development initiatives and exceed customer satisfaction targets
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.