Amazon Nova and our commitment to responsible AI

From reinforcement learning and supervised fine-tuning to guardrail models and image watermarking, responsible AI was foundational to the design and development of the Amazon Nova family of models.

The Amazon Nova family of multimodal foundation models, announced yesterday at Amazon Web Services’ re:Invent conference, is the latest example of our investment in the development and deployment of safe, transparent, and responsible AI. Our commitment to responsible AI has eight core dimensions:

  • Privacy and security: Data and models should be appropriately obtained, used, and protected;
  • Safety: Misuse and harmful system outputs should be deterred;
  • Fairness: Results should be of consistent quality across different groups of stakeholders;
  • Veracity and robustness: The system should produce the correct outputs, even when it encounters unexpected or adversarial inputs;
  • Explainability: System outputs should be explainable and understandable;
  • Controllability: The system should include mechanisms for monitoring and steering its behavior;
  • Governance: Best practices should be incorporated into the AI supply chain, which includes both providers and deployers;
  • Transparency: Stakeholders should be able to make informed choices about their engagement with the AI system.

We operationalized our responsible-AI dimensions into a series of design objectives that guide our decision-making throughout the model development lifecycle — from initial data collection and pretraining to model alignment to the implementation of post-deployment runtime mitigations. Our focus on our customers (both people and enterprises) helps us align with the human values represented by our responsible-AI objectives.

Amazon - RAI Figure-16x9_Dec3.png
The Amazon Nova responsible-AI framework.

In the following sections, we'll explore our approaches to alignment, guardrails, and rigorous testing, demonstrating how each contributes to the creation of AI systems that are not only powerful but also trustworthy and responsible. You can find more details in the responsible-AI section of our Amazon Nova Family technical report.

Training

Alignment

During training, we employed a number of automated methods to ensure we meet our design objectives for each of the responsible-AI dimensions. To govern model behavior (along the safety, fairness, controllability, veracity and robustness, and privacy and security dimensions), we used both supervised fine tuning (SFT) and reinforcement learning with human feedback (RLHF) to align models.

Related content
Generative AI raises new challenges in defining, measuring, and mitigating concerns about fairness, toxicity, and intellectual property, among other things. But work has started on the solutions.

For SFT, we created single- and multiturn training demonstrations in multiple languages, while for RLHF training, we collected human preference data — including examples from previous evaluations. For RLHF training, we also provided a responsible-AI-specific reward model, trained on internally annotated data across all responsible-AI dimensions.

Guardrails

In addition to enforcing responsible-AI alignment on the core Amazon Nova models, we built runtime input- and output-moderation models that serve as a first and last line of defense and allow us to respond more quickly to newly identified threats and gaps in model alignment. The main role of the input model is to detect prompts that contain malicious, insecure (e.g., corrupted), or inappropriate material or that attempt to bypass the core model alignment (prompt injection, jailbreaking). The output model is designed to filter out sensitive content that the core models may generate on occasion.

Evaluation

Internal evaluation

Throughout model development, we performed extensive evaluations using internally developed benchmarks for each of our responsible-AI dimensions. Each benchmark was continuously updated with examples from our past red-teaming exercises. This kept the internal benchmarks evergreen, preventing overfitting during development; it also ensured that the models did not regress against previously identified risks. Our datasets comprise a mixture of English, multilingual (German, French, Spanish, Italian, Portuguese, Japanese, Hindi, Arabic), text-only, multimodal, single-turn, and multiturn examples.

A comprehensive estimate of our models’ responsible-AI performance requires evaluation on two fronts: responsible-AI adherence and false refusals (unwarranted suppression of output). To that end, we created targeted test sets to measure adherence on each dimension and larger tests sets designed to mimic actual use to measure false-refusal rates.

Related content
Real-world deployment requires notions of fairness that are task relevant and responsive to the available data, recognition of unforeseen variation in the “last mile” of AI delivery, and collaboration with AI activists.

To evaluate the adversarial robustness of our models, we built a comprehensive benchmark based on existing and emerging adversarial techniques and novel techniques we developed internally. We considered risks specific to particular types of customers, such as developers building applications using our models and users directly interacting with our models. Our set of risk categories includes the following: sensitive-data exfiltration, degraded availability to users, unauthorized actions, and malicious-content generation.

Public responsible-AI benchmarks

In addition to our proprietary internal benchmarks, we have contributed to the growing body of publicly available responsible-AI datasets that can be used for both training and evaluation. We have developed benchmarks for three of our responsible-AI dimensions: fairness, privacy and security, and veracity and robustness.

Fairness: To help evaluate fairness, we created BOLD, a dataset with more than 23,000 English text-generation prompts that test for bias across profession, gender, race, religion, and political ideology. BOLD measures the toxicity of LLM completions of sentences like “A flight nurse is a registered...” or “An animator is an artist who...”.

In 2023, we introduced TANGO, a dataset that tests for misgendering of transgender and nonbinary (TGNB) people, including inconsistency in the use of neo-pronouns and the toxicity of responses to gender disclosure. To examine but also improve performance in underrepresented English-language dialects (e.g., Bahamian or rural African-American vernacular), we created Multi-VALUE, a rule-based system that maps standard American English sentences to 50 different dialects, using 189 unique linguistic features identified in the Electronic World Atlas of Varieties of English.

To examine LLMs’ understanding of regional variations in informal language, we collaborated on a project, led by University of Toronto researchers, to develop a slang benchmark featuring sentences from UK and US movie subtitles paired with non-slang versions of the same texts (e.g., “that jacket is blazing” vs. “that jacket is excellent”).

Related content
Amazon Scholar and NeurIPS advisory board member Richard Zemel on what robustness and responsible AI have in common, what AI can still learn from neuroscience, and the emerging topics that interest him most.

Veracity and robustness: To help evaluate veracity and robustness, we built INVITE, a method for automatically generating questions containing incorrect assumptions or presuppositions, such as “Which part of Canada is Szczekarków, Lubartów County, located in?” (Szczekarków is in Poland.) This is in addition to our long-standing set of FEVER shared tasks on factual verification, which are now used as standard benchmarks of factuality and evidence retrieval.

Privacy and security: Finally, for privacy and security, we created LLM-PIEval, a benchmark containing indirect prompt-injection attacks for LLMs that use retrieval-augmented generation (or RAG — i.e., retrieving outside information to augment generation). Attacks targeting sensitive APIs (e.g., banking) are injected into documents retrieved during execution of a benign question-answering task. In collaboration with labs at the University of Southern California, we also built FedMultimodal, a benchmark that can assess the robustness of multimodal federated-learning pipelines against data corruptions such as missing modalities, missing labels, and erroneous labels.

Red teaming

Red teaming is an online evaluation methodology in which human experts attempt to generate inputs that circumvent responsible-AI protections. Our process has four main steps: compiling known attack techniques, expanding on these techniques using our own models, defining sub-techniques, and conducting automated adversarial testing.

Given our models' multimodal capabilities — including text, images, and video — we develop attacks that target each modality individually and in combination. For text-based attacks, we focus on adversarial techniques to bypass guardrails. For image and video understanding, we craft adversarial content and explore attack vectors that embed malicious payloads within seemingly benign visual content. We also evaluate our model’s resilience to jailbreak techniques — i.e., the design of prompts that cause the model to exhibit prohibited behaviors.

In total, we identified and developed more than 300 distinct red-teaming techniques, which we tested individually and in various combinations. The attacks covered multiple languages and modalities, which were likewise targeted individually and in combination. We measured the model’s performance using transformed prompts that masked the intentions of seed prompts that were originally deflected.

Amazon_Qual_Animation_ALT_120424_TN_V1.gif
We developed more than 300 distinct red-teaming techniques (multicolored bars) that fit into seven basic categories (blue bars).

The cross-modality attacks target complex scenarios involving multiple input types. The image-understanding model, for instance, is capable of both scene description and text comprehension; contradictions between these elements pose potential risks. We emphasize the importance of careful prompt construction and provide additional guardrails to prevent cross-modal interference.

In accordance with our voluntary White House commitment to test the safety and security of our models, we worked with several red-teaming firms to complement our in-house testing in areas such as hate speech, political misinformation, extremism, and other domains. We also worked with a range of companies to develop red-teaming methods that leveraged their specific areas of expertise, such as chemical, biological, radiological, and nuclear risks and model deception capabilities. In addition to devising adversarial attacks like the ones we conduct in house, our external red-teaming experts have helped us design tests for issues that could arise from architectural structure, such as reduced availability.

Automated red teaming

To scale up our human-evaluation efforts, we built an automated red-teaming pipeline, which we adapted from the FLIRT (feedback-loop in-context red-teaming) framework we presented last month at the Conference on Empirical Methods in Natural-Language Processing (EMNLP).

Related content
Attribute-controlled fine-tuning can produce LLMs that adhere to policy while achieving competitive performance on general benchmarks.

The input to our “red-LM” model is a list of seed prompts that have been identified as problematic by human evaluators and grouped by responsible-AI category. For every category, we use in-context learning, prompt engineering, and a subset of seeds to generate additional prompts. We evaluate the responses to those prompts and extract the successful prompts (i.e., the ones triggering an undesired response) to use as seeds for the next round of generation.

We also expanded our pipeline to automatically generate multiturn, multilingual, and multimodal attacks against our systems, to uncover as many vulnerabilities as possible. FLIRT’s attack strategies have been shown to outperform existing methods of automated red teaming in both image-to-text and text-to-text settings.

Watermarking

The Nova models announced yesterday include two multimodal generative-AI models: Amazon Nova Canvas, which generates static images, and Amazon Nova Reel, which generates video. To promote the traceability of AI-generated content, we incorporate invisible watermarks directly into the image and video generation processes and, for Canvas, add metadata developed by the Coalition for Content Provenance and Authenticity (C2PA).

For static images, we developed an invisible-watermark method that is robust to alterations like rotation, resizing, color inversion, flipping, and other efforts to remove the watermark. For videos, we embed our watermark in each frame and ensure that our watermarking and detection methods withstand H.264 compression. We will soon be releasing our watermark detection API via Amazon Bedrock; the new API introduces several enhancements over existing systems, such as replacing binary predictions (watermarked or not) with confidence-score-based predictions, which help identify when the generated content has been edited. The new detection system covers both images and videos.

The road ahead

The rise of foundation models has created an unprecedented challenge and a tremendous opportunity for the field of responsible AI. We have worked hard to ensure that our Amazon Nova models are aligned with our responsible-AI dimensions and deliver an exceptional and delightful customer experience. But we know that there are still many challenging and exciting problems to solve. To address these, we're actively engaging with the academic community through programs like our recent Amazon Research Awards call for proposals, which focuses on key areas such as machine learning in generative AI, governance and responsible AI, distributed training, and machine learning compilers and compiler-based optimizations. By fostering collaboration between industry and academia, we aim to advance responsible-AI practices and drive innovation that mitigates the risks of developing advanced AI while delivering benefits to society as a whole.

Acknowledgments: Chalapathi Choppa, Rahul Gupta, Abhinav Mohanty, Sherif Mostafa

Related content

CN, 31, Shanghai
Are you looking to work at the forefront of Machine Learning and AI? Would you be excited to apply Generative AI algorithms to solve real world problems with significant impact? The Generative AI Innovation Center helps AWS customers implement Generative AI solutions and realize transformational business opportunities. This is a team of strategists, scientists, engineers, and architects working step-by-step with customers to build bespoke solutions that harness the power of generative AI. Starting in 2024, the Innovation Center launched a new Custom Model and Optimization program to help customers develop and scale highly customized generative AI solutions. The team helps customers imagine and scope bespoke use cases that will create the greatest value for their businesses, define paths to navigate technical or business challenges, develop and optimize models to power their solutions, and make plans for launching solutions at scale. The GenAI Innovation Center team provides guidance on best practices for applying generative AI responsibly and cost efficiently. You will work directly with customers and innovate in a fast-paced organization that contributes to game-changing projects and technologies. You will design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. We’re looking for Applied Scientists capable of using GenAI and other techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems. As an Applied Scientist, you will - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate generative AI solutions to address real-world challenges - Interact with customers directly to understand their business problems, aid them in implementation of generative AI solutions, brief customers and guide them on adoption patterns and paths to production - Help customers optimize their solutions through approaches such as model selection, training or tuning, right-sizing, distillation, and hardware optimization - Provide customer and market feedback to product and engineering teams to help define product direction About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite network. Our mission is to deliver fast, reliable internet connectivity to customers beyond the reach of existing networks. From individual households to schools, hospitals, businesses, and government agencies, Amazon Leo will serve people and organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. This position is part of the Satellite Attitude Determination and Control team. You will design and analyze the control system and algorithms, support development of our flight hardware and software, help integrate the satellite in our labs, participate in flight operations, and see a constellation of satellites flow through the production line in the building next door. Key job responsibilities - Design and analyze algorithms for estimation, flight control, and precise pointing using linear methods and simulation. - Develop and apply models and simulations, with various levels of fidelity, of the satellite and our constellation. - Component level environmental testing, functional and performance checkout, subsystem integration, satellite integration, and in space operations. - Manage the spacecraft constellation as it grows and evolves. - Continuously improve our ability to serve customers by maximizing payload operations time. - Develop autonomy for Fault Detection and Isolation on board the spacecraft. A day in the life This is an opportunity to play a significant role in the design of an entirely new satellite system with challenging performance requirements. The large, integrated constellation brings opportunities for advanced capabilities that need investigation and development. The constellation size also puts emphasis on engineering excellence so our tools and methods, from conceptualization through manufacturing and all phases of test, will be state of the art as will the satellite and supporting infrastructure on the ground. You will find that Amazon Leo's mission is compelling, so our program is staffed with some of the top engineers in the industry. Our daily collaboration with other teams on the program brings constant opportunity for discovery, learning, and growth. About the team Our team has lots of experience with various satellite systems and many other flight vehicles. We have bench strength in both our mission and core GNC disciplines. We design, prototype, test, iterate and learn together. Because GNC is central to safe flight, we tend to drive Concepts of Operation and many system level analyses.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for applied scientists to solve challenging and open-ended problems in the domain of user and content safety. As an applied scientist on Twitch's Community team, you will use machine learning to develop data products tackling problems such as harassment, spam, and illegal content. You will use a wide toolbox of ML tools to handle multiple types of data, including user behavior, metadata, and user generated content such as text and video. You will collaborate with a team of passionate scientists and engineers to develop these models and put them into production, where they can help Twitch's creators and viewers succeed and build communities. You will report to our Senior Applied Science Manager in San Francisco, CA. You can work from San Francisco, CA or Seattle, WA. You Will - Build machine learning products to protect Twitch and its users from abusive behavior such as harassment, spam, and violent or illegal content. - Work backwards from customer problems to develop the right solution for the job, whether a classical ML model or a state-of-the-art one. - Collaborate with Community Health's engineering and product management team to productionize your models into flexible data pipelines and ML-based services. - Continue to learn and experiment with new techniques in ML, software engineering, or safety so that we can better help communities on Twitch grow and stay safe. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
US, WA, Seattle
The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Demand Utilization team with Sponsored Products and Brands owns finding the appropriate ads to surface to customers when they search for products on Amazon. We strive to understand our customers’ intent and identify relevant ads which enable them to discover new and alternate products. This also enables sellers on Amazon to showcase their products to customers, which may at times be buried deeper in the search results. Our systems and algorithms operate on one of the world's largest product catalogs, matching shoppers with products - with a high relevance bar and strict latency constraints. We are a team of machine learning scientists and software engineers working on complex solutions to understand the customer intent and present them with ads that are not only relevant to their actual shopping experience, but also non-obtrusive. This area is of strategic importance to Amazon Retail and Marketplace business, driving long term-growth. We are looking for an Applied Scientist III, with a background in Machine Learning to optimize serving ads on billions of product pages. The solutions you create would drive step increases in coverage of sponsored ads across the retail website and ensure relevant ads are served to Amazon's customers. You will directly impact our customers’ shopping experience while helping our sellers get the maximum ROI from advertising on Amazon. You will be expected to demonstrate strong ownership and should be curious to learn and leverage the rich textual, image, and other contextual signals. This role will challenge you to utilize innovative machine learning techniques in the domain of predictive modeling, natural language processing (NLP), deep learning, reinforcement learning, query understanding, vector search (kNN) and image recognition to deliver significant impact for the business. Ideal candidates will be able to work cross functionally across multiple stakeholders, synthesize the science needs of our business partners, develop models to solve business needs, and implement solutions in production. In addition to being a strongly motivated IC, you will also be responsible for mentoring junior scientists and guiding them to deliver high impacting products and services for Amazon customers and sellers. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE Key job responsibilities As an Applied Scientist III on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in deploying your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches.
US, CA, Sunnyvale
Are you passionate about robotics and research? Do you want to solve real customer problems through innovative technology? Do you enjoy working on scalable research and projects in a collaborative team environment? Do you want to see your science solutions directly impact millions of customers worldwide? At Amazon, we hire the best minds in technology to innovate and build on behalf of our customers. Customer obsession is part of our company DNA, which has made us one of the world's most beloved brands. We’re looking for current PhD students with a passion for robotic research and applications to join us as Robotics Applied Scientist II Intern/Co-ops in 2026 to shape the future of robotics and automation at an unprecedented scale across. For these positions, our Robotics teams at Amazon are looking for students with a specialization in one or more of the research areas in robotics such as: robotics, robotics manipulation (e.g., robot arm, grasping, dexterous manipulation, end of arm tools/end effector), autonomous mobile robots, mobile manipulation, movement, autonomous navigation, locomotion, motion/path planning, controls, perception, sensing, robot learning, artificial intelligence, machine learning, computer vision, large language models, human-robot interaction, robotics simulation, optimization, and more! We're looking for curious minds who think big and want to define tomorrow's technology. At Amazon, you'll grow into the high-impact engineer you know you can be, supported by a culture of learning and mentorship. Every day brings exciting new challenges and opportunities for personal growth. By applying to this role, you will be considered for Robotics Applied Scientist II Intern/Co-op (2026) opportunities across various Robotics teams at Amazon with different robotics research focus, with internship positions available for multiple locations, durations (3 to 6+ months), and year-round start dates (winter, spring, summer, fall). Amazon intern and co-op roles follow the same internship structure. "Intern/Internship" wording refers to both interns and co-ops. Amazon internships across all seasons are full-time positions, and interns should expect to work in office, Monday-Friday, up to 40 hours per week typically between 8am-5pm. Specific team norms around working hours will be communicated by your manager. Interns should not have conflicts such as classes or other employment during the Amazon work-day. Applicants should have a minimum of one quarter/semester/trimester remaining in their studies after their internship concludes. The robotics internship join dates, length, location, and prospective team will be finalized at the time of any applicable job offers. In your application, you will be able to provide your preference of research interests, start dates, internship duration, and location. While your preference will be taken into consideration, we cannot guarantee that we can meet your selection based on several factors including but not limited to the internship availability and business needs of this role. About the team The Personal Robotics Group is pioneering intelligent robotic products that deliver meaningful customer experiences. We're the team behind Amazon Astro, and we're building the next generation of robotic systems that will redefine how customers interact with technology. Our work spans the full spectrum from advanced hardware design to sophisticated software and control systems, combining mechanical innovation, software engineering, dynamic systems modeling, and intelligent algorithms to create robots that are not just functional, but delightful. This is a unique opportunity to shape the future of personal robotics working with world-class teams pushing the boundaries of what's possible in robotic manipulation, locomotion, and human-robot interaction. Join us if you're passionate about creating the future of personal robotics, solving complex challenges at the intersection of hardware and software, and seeing your innovations deliver transformative customer experiences.
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Science Manager with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to lead a team ensuring the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Science Manager will lead and mentor a team of Applied Scientists who develop comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. The manager will guide the team in designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that align with core scientist team developing Amazon Nova models. The Applied Science Manager will oversee expert-level manual audits, meta-audits to evaluate auditor performance, and provide coaching to uplift overall quality capabilities across the team. A critical aspect of this role involves managing the development and maintenance of LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Science Manager will also oversee the configuration of data collection workflows and ensure effective communication of quality feedback to stakeholders. The manager will have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. The Applied Science Manager will be responsible for recruiting, hiring, and developing team members, conducting performance reviews, setting clear expectations and growth plans, and fostering a culture of scientific excellence and innovation. The manager will communicate with senior leadership, cross-functional technical teams, and customers to collect requirements, describe product features and technical designs, and articulate product strategy. A day in the life An Applied Science Manager with the AGI team will lead quality solution design, guide root cause analysis on data quality issues, drive research into new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. The manager will work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice. The manager will also conduct regular 1:1s with team members, provide mentorship and coaching, and ensure the team delivers high-impact results aligned with organizational goals.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.