Amazon builds first foundation model for multirobot coordination

Trained on millions of hours of data from Amazon fulfillment centers and sortation centers, Amazon’s new DeepFleet models predict future traffic patterns for fleets of mobile robots.

Large language models and other foundation models have introduced a new paradigm in AI: large models trained in a self-supervised fashion — no data annotation required — on huge volumes of data can learn general competencies that allow them to perform a variety of tasks. The most prominent examples of this paradigm are in language, image, and video generation. But where else can it be applied?

At Amazon, one answer to that question is in managing fleets of robots. In June, we announced the development of a new foundation model for predicting the interactions of mobile robots on the floors of Amazon fulfillment centers (FCs) and sortation centers, which we call DeepFleet. We still have a lot to figure out, but DeepFleet can already help assign tasks to our robots and route them around potential congestion, increasing the efficiency of our robot deployments by 10%. That lets us deliver packages to customers more rapidly and at lower costs.

Robots laden with storage pods at a fulfillment center (left) and with packages at a sortation center (right).
Robots laden with storage pods at a fulfillment center (left) and with packages at a sortation center (right).

One question I get a lot is why we would need a foundation model to predict robots’ locations. After all, we know exactly what algorithms the robots are running; can’t we just simulate their interactions and get an answer that way?

There are two obstacles to this approach. First, accurately simulating the interactions of a couple thousand robots faster than real time is prohibitively resource intensive: our fleet already uses all available computation time to optimize its plans. In contrast, a learned model can quickly infer how traffic will likely play out.

Second, we see predicting robot locations as, really, a pretraining task, which we use to teach an AI to understand traffic flow. We believe that, just as pretraining on next-word prediction enabled chatbots to answer a diverse range of questions, pretraining on location prediction can enable an AI to generate general solutions for mobile-robot fleets.

Related content
Unique end-of-arm tools with three-dimensional force sensors and innovative control algorithms enable robotic arms to “pick” items from and “stow” items in fabric storage pods.

The success of a foundation model depends on having adequate training data, which is one of the areas where Amazon has an advantage. At the same time that we announced DeepFleet, we also announced the deployment of our millionth robot to Amazon FCs and sortation centers. We have literally billions of hours of robot navigation data that we can use to train our foundation models.

And of course, Amazon is also the largest provider of cloud computing resources, so we have the computational capacity to train and deploy models large enough to benefit from all that training data. One of our paper’s key findings is that, like other foundation models, a robot fleet foundation model continues to improve as the volume of training data increases.

In some ways, it’s natural to adapt LLM architectures to the problem of predicting robot location. An LLM takes in a sequence of words and projects that sequence forward, one word at a time. Similarly, a robot navigation model would take in a sequence of robot states or floor states and project it forward, one state at a time.

In other ways, the adaptation isn’t so straightforward. With LLMs, it’s clear what the inputs and outputs should be: words (or more precisely word parts, or tokens). But how about with robot navigation? Should the input to the model be the state of a single robot, and you produce a floor map by aggregating the outputs of multiple models? Or should the inputs and outputs include the state of the whole floor? And if they do, how do you represent the floor? As a set of features relative to the robot location? As an image? As a graph? And how do you handle time? Is each input to the model a snapshot taken at a regular interval? Or does each input represent a discrete action, whenever it took place?

We experimented with four distinct models that answer these questions in different ways. The basic setup is the same for all of them: we model the floor of an FC or sortation center as a grid whose cells can be occupied by robots, which are either laden (storage pods in an FC, packages in a sortation center) or unladen and have fixed orientations; obstacles; or storage or drop-off locations. Unoccupied cells make up travel lanes.

Sample models of a fulfillment center (top) and a sortation center (bottom).
Sample models of a fulfillment center (top) and a sortation center (bottom).

Like most machine learning systems of the past 10 years, our models produce embeddings of input data, or vector representations that capture data features useful for predictive tasks. All of our models make use of the Transformer architecture that is the basis of today’s LLMs. The Transformer’s characteristic feature is the attention mechanism: when determining its next output, the model determines how much it should attend to each data item it’s already seen — or to supplementary data. One of our models also uses a convolutional neural network, the standard model for image processing, while another uses a graph neural network to capture spatial relationships.

DeepFleet is the collective name for all of our models. Individually, they are the robot-centric model, the robot-floor model, the image-floor model, and the graph-floor model.

1. The robot-centric model

The robot-centric model focuses on one robot at a time — the “ego robot” — and builds a representation of its immediate environment. The model’s encoder produces an embedding of the ego robot’s state — where it is, what direction it’s facing, where it’s headed, whether it’s laden or unladen, and so on. The encoder also produces embeddings of the states of the 30 robots nearest the ego robot; the 100 nearest grid cells; and the 100 nearest objects (drop-off chutes, storage pods, charging stations, and so on).

A Transformer combines these embeddings into a single embedding, and a sequence of such embeddings — representing a sequence of states and actions the ego robot took — passes to a decoder. On the basis of that sequence, the decoder predicts the robot’s next action. This process happens in parallel for every robot on the floor. Updating the state of the floor as a whole is a matter of sequentially applying each robot’s predicted action.

Architecture of the robot-centric model.
Architecture of the robot-centric model.

2. The robot-floor model

With the robot-floor model, separate encoders produce embeddings of the robot states and fixed features of the floor cells. As the only changes to the states of the floor cells are the results of robotic motion, the floor state requires only a single embedding.

At decoding time, we use cross-attention between the robot embeddings and the floor state embedding to produce a new embedding for each robot that factors in floor state information. Then, for each robot, we use cross-attention between its updated embedding and those of each of the other robots to produce a final embedding, which captures both robot-robot and robot-floor relationships. The last layer of the model — the output head — uses these final embeddings to predict each robot’s next action.

The architecture of the robot-floor model..png
The architecture of the robot-floor model.

3. The image-floor model

Convolutional neural networks step through an input image, applying different filters to fixed-size blocks of pixels. Each filter establishes a separate processing channel through the network. Typically, the filters are looking for different image features, such as contours with particular shapes and orientations.

In our case, however, the “pixels” are cells of the floor grid, and each channel is dedicated to a separate cell feature. There are static features, such as fixed objects in particular cells, and dynamic features, such as the locations of the robots and their states.

Related content
Generative AI supports the creation, at scale, of complex, realistic driving scenarios that can be directed to specific locations and environments.

In each channel, representations of successive states of the floor are flattened — converted from 2-D grids to 1-D vectors — and fed to a Transformer. The Transformer’s attention mechanism can thus attend to temporal and spatial features simultaneously. The Transformer’s output is an encoding of the next floor state, which a convolutional decoder converts back to a 2-D representation.

4. The graph-floor model

A natural way to model the FC or sortation center floor is as a graph whose nodes are floor cells and whose edges encode the available movements between cells (for example, a robot may not move into a cell occupied by another object). We convert such a spatial graph into a spatiotemporal graph by adding temporal edges that connect each node to itself at a later time step.

Next, in the approach made standard by graph neural networks, we use a Transformer to iteratively encode the spatiotemporal graph as a set of node embeddings. With each iteration, a node’s embedding factors in information about nodes farther away from it in the graph. In parallel, the model also builds up a set of edge embeddings.

Each encoding block also includes an attention mechanism that uses the edge embeddings to compute attention scores between node embeddings. The output embedding thus factors in information about the distances between nodes, so it can capture long-range effects.

From the final set of node embeddings, we can decode a prediction of where each robot is, whether it is moving, what direction it is heading, etc.

The architecture of the graph-floor model.
The architecture of the graph-floor model.

Evaluation

We used two metrics to evaluate all four models’ performance. The first is dynamic-time-warping (DTW) distance between predictions and the ground truth across multiple dimensions, including robot position, speed, state, and the timing of load and unload events. The second metric is congestion delay error (CDE), or the relative error between delay predictions and ground truth.

Overall, the robot-centric model performed best, with the top scores on both CDE and the DTW distance on position and state predictions, but the robot-floor model achieved the top score on DTW distance for timing estimation. The graph-floor model didn’t fare quite as well, but its results were still strong at a significantly lower parameter count — 13 million, versus 97 million for the robot-centric model and 840 million for the robot-floor model.

The image-floor model didn’t work well. We suspect that this is because the convolutional filters of a convolutional neural network are designed to abstract away from pixel-level values to infer larger-scale image features, like object classifications. We were trying to use convolutional neural networks for pixel-level predictions, which they may not be suited for.

We also conducted scaling experiments with the robot-centric and graph-floor models, which showed that, indeed, model performance improved with increases in the volume of training data — an encouraging sign, given the amount of data we have at our disposal.

On the basis of these results, we are continuing to develop the robot-centric, robot-floor, and graph-floor models, initially using them to predict congestion, with the longer-term goal of using them to produce outputs like assignments of robots to specific retrieval tasks and target locations. You can read the full paper on arXiv.

Research areas

Related content

US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: Handle challenging problems that directly impact millions of creators and customers Independently collect and analyze data Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization Key job responsibilities he successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and AI, computer vision technologies. The intern/co-op project(s) and the internship/co-op location are based on the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, mobile robotics, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics https://www.aboutamazon.com/news/operations/amazon-robotics-robots-fulfillment-center https://www.aboutamazon.com/news/operations/amazon-million-robots-ai-foundation-model
US, NY, New York
Are you passionate about conducting research to develop and grow leaders? Would you like to impact more than 1M Amazonians globally and improve the employee experience? If so, you should consider joining the People eXperience & Technology Central Science (PXTCS) team. Our goal is to be best and most diverse workforce in the world. PXTCS uses science, research, and technology to optimize employee experience and performance across the full employee lifecycle, from first contact through exit. We use economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. This individual should be skilled in core data science tools and methods, icnluding SQL, a statistical software package (e.g., R, Python, or Stata), inferential statistics, and proficient in machine learning. This person should also have strong business acumen to navigate complex, ambiguous business challenges — they should be adept at asking the right questions, knowing what methodologies to use (and why), efficiently analyzing massive datasets, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders). In order to move quickly, deliver high-quality results, and adapt to ever-evolving business priorities, effective communication skills in research fundamentals (e.g., research design, measurement, statistics) will also be a must. Major responsibilities will include: - Managing the full life cycle of large-scale research initiatives across multiple business segments that impact leaders in our organization (i.e., develop strategy, gather requirements, manage, and execute) - Serving as a subject matter expert on a wide variety of topics related to research design, measurement, analysis - Working with internal partners and external stakeholders to evaluate research initiatives that provide bottom-line ROI and incremental improvements over time - Collaborating with a cross-functional team that has expertise in social science, machine learning, econometrics, psychometrics, natural language processing, forecasting, optimization, business intelligence, analytics, and policy evaluation - Ability to query and clean complex datasets from multiple sources, to funnel into advanced statistical analysis - Writing high-quality, evidence-based documents that help provide insights to business leaders and gain buy-in - Sharing knowledge, advocating for innovative solutions, and mentoring others Inclusive Team Culture Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have 12 affinity groups (employee resource groups) with more than 1M employees across hundreds of chapters around the world. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which reminds team members to seek diverse perspectives, learn and be curious, and earn trust. Flexibility It isn’t about which hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We offer flexibility and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth We care about your career growth, too. Whether your goals are to explore new technologies, take on bigger opportunities, or get to the next level, we'll help you get there. Our business is growing fast and our people will grow with it. About the team We are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
IN, KA, Bengaluru
Alexa is the voice activated digital assistant powering devices like Amazon Echo, Echo Dot, Echo Show, and Fire TV, which are at the forefront of this latest technology wave. To preserve our customers’ experience and trust, the Alexa Sensitive Content Intelligence (ASCI) team creates policies and builds services and tools through Machine Learning techniques to detect and mitigate sensitive content across Alexa. We are looking for an experienced Applied Science Manager to build industry-leading technologies in attribute extraction and sensitive content detection across all languages and countries. Key job responsibilities An Applied Scientist II will be working with a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP related tasks. You will work in a hybrid, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other junior scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a candidate with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of NLP models (e.g. LSTM, transformer based models) and where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video. Job responsibilities
US, MA, Boston
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team The AGI team has a mission to push the envelope with multimodal LLMs and Gen AI in Computer Vision, in order to provide the best-possible experience for our customers.
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
CA, ON, Toronto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Palo Alto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, CA, Palo Alto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an Applied Science Manager, you will: * Directly manage and lead a cross-functional team of Applied Scientists, Machine Learning Engineers, and Software Development Engineers. * Develop science and engineering roadmaps for SPB ads response prediction with ML and Gen AI solutions, run annual planning, and foster cross-team collaboration on model development and integration to advertising applications. * Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. * Stay informed about recent scientific publications, industrial research trends, and system designs that are pertinent to the SPB advertising business and bring those insights with the team. About the team The Ad Response Prediction team within Sponsored Products and Brands (SPB) drives personalized shopping experiences for SPB Ads across placements, pages, and devices worldwide. We achieve this through ML and GenAI solutions that include customized shopper response prediction and session-level understanding to optimize every stage of the ad-serving process, from sourcing and bidding to widget discovery and auctions. Our responsibilities include advancing response prediction through model and feature innovations and extending prediction beyond the auction stage to areas such as targeting, sourcing, and bidding. We are seeking an Applied Science Manager with a strong background in ML and Gen AI solutions. The ideal candidate shall have experience managing both scientists and engineers and will be passionate about applying these technologies to the advertising domain.