Scenario Diffusion helps Zoox vehicles navigate safety-critical situations

Generative AI supports the creation, at scale, of complex, realistic driving scenarios that can be directed to specific locations and environments.

Autonomous vehicles (AVs) such as the Zoox purpose-built robotaxi represent a new era in human mobility, but the deployment of AVs comes with many challenges. It’s essential to do extensive safety testing using simulation, which requires the creation of synthetic driving scenarios at scale. Particularly important is generating realistic safety-critical road scenarios, to test how AVs will react to a wide range of driving situations, including those that are relatively rare and potentially dangerous.

Zoox robotaxi.png
The Zoox robotaxi.

Traditional methods tend to produce scenarios of limited complexity and struggle to replicate many real-world situations. More recently, machine learning (ML) models have used deep learning to produce complex traffic scenarios based on specified map regions, but they offer limited means of shaping the resulting scenarios in terms of vehicle positionings, speeds, and trajectories. This makes it difficult to create specific safety-critical scenarios at scale. Designing huge numbers of such scenarios by hand, meanwhile, is impractical.

Related content
Leveraging a large vision-language foundation model enables state-of-the-art performance in remote-object grounding.

In a paper we presented at the 2023 Conference on Neural Information Processing Systems (NeurIPS), we address these challenges with a method we call Scenario Diffusion. Our system comprises a novel ML architecture based on latent diffusion, an ML technique used in image generation in which a model learns to convert random noise into detailed images.

Scenario Diffusion is able to output highly controllable and realistic traffic scenarios, at scale. It is controllable because the outputs of the Scenario Diffusion model are based not only on the map of the desired area but also on sets of easily produced descriptors that can specify the positioning and characteristics of some or all of the vehicles in a scene. These descriptors, which we call agent tokens, take the form of feature vectors. We can similarly specify global scene tokens, which indicate how busy the roads in a given scenario should be.

Directed scenario generation.png
Providing the Scenario Diffusion model with additional information about the desired scenario directs the generative process.

Combining a diffusion architecture with these token-based controls allows us to produce safety-critical driving scenarios at will, boosting our ability to validate the safety of our purpose-built robotaxi. We are excited to apply generative AI where it can have a big impact on the established practical challenge of AV safety.

Inside the Scenario Diffusion model

AV control software is typically divided into perception, prediction, and motion-planning modules. On the road, an AV’s cameras and other sensors perceive the road situation, which can be represented, for motion-planning purposes, as a simplified bird’s-eye-view image.

Related content
Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

Each of the vehicles (“agents”) in this multi-channelled image, including the AV itself, is represented as a “bounding box” that reflects the vehicle’s width, length, and position on the local map. The image also contains information on other characteristics of the vehicles, such as heading and trajectory. These characteristics and the map itself are the two key elements of a synthetic driving scenario that are required to validate motion planning in simulation.

The Scenario Diffusion model has two components. The first is an autoencoder, which projects complex driving scenarios into a more manageable representational space. The second component, the diffusion model, operates in this space.

Like all diffusion models, ours is trained by adding noise to real-world scenarios and asking the model to remove this noise. Once the model is trained, we can sample random noise and use the model to gradually convert this noise into a realistic driving scenario. For a detailed exploration of our training and inference processes and model architecture, dive into our paper.

We trained the model on both public and proprietary real-world datasets of driving logs containing millions of driving scenarios across a variety of geographical regions and settings.

Prior ML methods for generating driving scenarios typically place the bounding boxes of agents on a map — essentially a static snapshot, with no motion information. They then use object recognition to identify those boxes before applying heuristics or learned methods to decide on suitable trajectories for each agent. Such hybrid solutions can struggle to capture the nuances of real-world driving.

Related content
A combination of cutting-edge hardware, sensor technology, and bespoke machine learning approaches can predict trajectories of vehicles, people, and even animals, as far as 8 seconds into the future.

A key contribution of our work is that it achieves the simultaneous inference of agent placement and behavior. When our trained model generates a traffic scenario for a given map, every agent it positions in the scene has an associated feature vector that describes its characteristics, such as the dimensions, orientation, and trajectory of the vehicle. The driving scenario emerges fully formed.

Our feature vector approach not only provides more-realistic scenarios but also makes it very easy to add information to the model, making it highly adaptable. In the paper, we deal only with standard vehicles, but it would be straightforward to generate more-complex scenarios that include bikes, pedestrians, scooters, animals — anything previously encountered by a Zoox robotaxi in the real world.

Creating safety-critical “edge cases” on demand

If we simply want to create many thousands of realistic driving scenarios, with no particular situation in mind, we let Scenario Diffusion freely generate traffic on a particular map. This type of approach has been explored in prior research. But randomly generated scenarios are not an efficient way to validate how AV software deals with rare, safety-critical events.

Initial map.png
The model is provided with a map and a set of tokens that define the characteristics of an autonomous vehicle (agent A, red) and a bus (agent B, orange) turning right up ahead.
Scenario diffusion.gif
In the diffusion part of the process, the scenario undergoes multiple rounds of de-noising until a realistic scenario featuring the specified vehicles emerges.
Scenario diffusion bounding boxes.png
The final scenario shows trajectories that extend from two seconds in the past (pink) to two seconds into the future (blue).

Imagine we want to validate how an AV will behave in a safety-critical situation — such as a bus turning right in front of it — on a given map. Creating such scenarios is straightforward for Scenario Diffusion, thanks to its use of agent tokens and global scene tokens. Agent tokens can easily be computed from data in real-life driving logs or created by humans. Then they can be used to prompt the model to place vehicles with desired characteristics in specific locations. The model will include those vehicles in its generated scenarios while creating additional agents to fill out the rest of the scene in a realistic manner.

With just one GPU, it takes about one second to generate a novel scenario.

Successful generalization across regions

To evaluate our model’s ability to generalize across geographical regions, we trained separate models on data from each region of the Zoox dataset. A model trained solely on driving logs from, say, San Francisco did better at generating realistic driving scenarios for San Francisco than a model trained on data from Seattle. However, models trained on the full Zoox dataset of four regions come very close to the performance of region-specialized models. These findings suggest that, while there are unique aspects of each region, the fully trained model has sufficient capacity to capture this diversity.

The ability to generalize to other cities is good news for the future of AV validation as Zoox expands into new metropolitan areas. It will always be necessary to collect real-world driving logs in new locations, using AVs outfitted with our full sensor architecture and monitored by a safety driver. However, the ability to generate supplementary synthetic data will shorten the time it takes to validate our AV control system in new areas.

We plan to build on this research by making the model’s output increasingly rich and nuanced, with a greater diversity of vehicle and object types, to better match the complexity of real streets. For example, we could ultimately design a model to generate highly complex safety scenarios, such as driving by a school location at dismissal time, with crowds of kids and parents near or spilling onto the road.

It is this powerful combination of flexibility, controllability, and increasing realism that we believe will make our Scenario Diffusion approach foundational to the future of safety validation for autonomous vehicles.

Acknowledgments: Meghana Reddy Ganesina, Noureldin Hendy, Zeyu Wang, Andres Morales, Nicholas Roy.

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.