Teaching household robots where to find requested objects

Leveraging a large vision-language foundation model enables state-of-the-art performance in remote-object grounding.

Remote-object grounding is the task of automatically determining where in the local environment to find an object specified in natural language. It is an essential capability for household robots, which need to be able to execute commands like “Bring me the pair of glasses on the counter in the kids’ bathroom.”

In a paper we are presenting at the International Conference on Intelligent Robots and Systems (IROS), my colleagues and I describe a new approach to remote-object grounding that leverages a foundation model — a large, self-supervised model that learns joint representations of language and images. By treating remote-object grounding as an information retrieval problem and using a “bag of tricks” to adapt the foundation model to this new application, we enable a 10% improvement over the state of the art on one benchmark dataset and a 5% improvement on another.

VLN problem setup.png
A new approach treats remote-object grounding as an information retrieval problem, in which a model must match candidate objects against a natural-language request.

Language-and-vision models

In recent years, foundation models — such as large language models — have revolutionized several branches of AI. Foundation models are usually trained through masking: elements of the input data — whether text or images — are masked out, and the model must learn to fill in the gaps. Since masking requires no human annotation, it enables the models to be trained on huge corpora of publicly available data. Our approach to remote-object grounding is based on a vision-language (VL) model — a model that has learned to jointly represent textual descriptions and visual depictions of the same objects.

Related content
Predicting the delays caused when robots’ paths intersect can improve task assignment and path planning in warehouses.

We consider the scenario in which a household robot has had adequate time to build up a 3-D map of its immediate environment, including visual representations of the objects in that environment. We treat remote-object grounding as an information retrieval problem, meaning that the model takes linguistic descriptions — e.g., “the glasses on the counter in the kids’ bathroom” — and retrieves the corresponding object in its representation of its visual environment.

Adapting a VL model to this problem poses two major challenges. The first is the scale of the problem. A single household might contain 100,000 discrete objects; it would be prohibitively time consuming to use a large foundation model to query that many candidates at once. The other challenge is that VL models are typically trained on 2-D images, whereas a household robot builds up a 3-D map of its environment.

Gunnar A. Sigurdsson on adapting vision-language foundation models to the problem of remote-object grounding.

Bag of tricks

In our paper, we present a “bag of tricks” that help our model surmount these and other challenges.

1. Negative examples

The obvious way to accommodate the scale of the retrieval problem is to break it up, separately scoring the candidate objects in each room, say, and then selecting the most probable candidates from each list of objects.

The problem with this approach is that the scores of the objects in each list are relative to each other. A high-scoring object is one that is much more likely than the others to be the correct referent for a command; relative to candidates on a different list, however, its score might drop. To improve consistency across lists, we augment the model’s training data with negative examples — viewpoints from which the target objects are not visible. This prevents the model from getting overconfident in its scoring of candidate objects.

Related content
Using different levels of precision for different arithmetic tasks reduces computational burden without compromising performance.

2. Distance-limited exploration

Our second trick for addressing the problem of scale is to limit the radius in which we search for candidate objects. During training, the model learns not only what objects best correspond to what requests but how far it usually has to go to find them. Limiting search radius makes the problem much more tractable with little loss of accuracy.

3. 3-D representations

To address the mismatch between the 2-D data used to train the VL model and the 3-D data that the robot uses to map its environment, we convert the 2-D coordinates of the “bounding box” surrounding an object — the rectangular demarcation of the object’s region of the image — to a set of 3-D coordinates: the three spatial dimensions of the center of the bounding box and a radius, defined as half the length of the bounding box’s diagonal.

4. Context vectors

Finally, we employ a trick to improve the model’s overall performance. For each viewpoint — that is, each location from which the robot captures multiple images of the immediate environment — our model produces a context vector, which is an average of the vectors corresponding to all of the objects visible from that viewpoint. Adding the context vector to the representations of particular candidate objects enables the robot to, say, distinguish the mirror above the sink in one bathroom from the mirror above the sink in another.

VLN overview.png
An overview of the "bag of tricks" deployed, both during training and at inference time, to adapt a vision-language model to the problem of remote-object grounding.

We tested our approach on two benchmark datasets, each of which contains tens of thousands of commands and the corresponding sets of sensor readings, and found that it significantly outperformed the previous state-of-the-art model. To test our algorithm’s practicality, we also deployed it on a real-world robot and found that it was able to execute commands in real time with high accuracy.

Frontier-based exploration.16x9.png
At inference time, if the robot has no prior knowledge of its environment, it can use frontier-based exploration to map the locations of candidate objects for remote-object grounding.

Related content

US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Targeting and Recommendations team within Sponsored Products and Brands empowers advertisers with intelligent targeting controls and one-click campaign recommendations that automatically populate optimal settings based on ASIN data. This comprehensive suite provides advanced targeting capabilities through AI-generated keyword and ASIN suggestions, sophisticated targeting controls including Negative Targeting, Manual Targeting with Product Attribute Targeting (PAT) and Keyword Targeting (KWT), and Automated Targeting (ATv2). Our vision is to build a revolutionary, highly personalized and context-aware agentic advertiser guidance system that seamlessly integrates Large Language Models (LLMs) with sophisticated tooling, operating across both conversational and traditional ad console experiences while scaling from natural language queries to proactive, intelligent guidance delivery based on deep advertiser understanding, ultimately enhancing both targeting precision and one-click campaign optimization. Through strategic partnerships across Ad Console, Sales, and Marketing teams, we identify high-impact opportunities spanning from strategic product guidance to granular keyword optimization and deliver them through personalized, scalable experiences grounded in state-of-the-art agent architectures, reasoning frameworks, sophisticated tool integration, and model customization approaches including tuning, MCP, and preference optimization. This presents an exceptional opportunity to shape the future of e-commerce advertising through advanced AI technology at unprecedented scale, creating solutions that directly impact millions of advertisers. Key job responsibilities * Design and build targeting and 1 click recommendation agents to guide advertisers in conversational and non-conversational experience. * Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). * Collaborate with peers across engineering and product to bring scientific innovations into production. * Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. * Develop agentic architectures that integrate planning, tool use, and long-horizon reasoning. A day in the life As an Applied Scientist on our team, your days will be immersed in collaborative problem-solving and strategic innovation. You'll partner closely with expert applied scientists, software engineers, and product managers to tackle complex advertising challenges through creative, data-driven solutions. Your work will center on developing sophisticated machine learning and AI models, leveraging state-of-the-art techniques in natural language processing, recommendation systems, and agentic AI frameworks. From designing novel targeting algorithms to building personalized guidance systems, you'll contribute to breakthrough innovations
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. The Trust CX Innovations team is looking for an Applied Scientist with strong background in Generative AI space to build solutions that help in upholding customer trust for Alexa+. As an Applied Scientist in Trust CX innovations, you will be at the forefront of developing innovative solutions to critical challenges in AI trust and privacy. You'll lead research in trust-preserving machine learning techniques. We are working on revolutionizing the way Amazonians work and collaborate. You will help us achieve new heights of productivity through the power of advanced generative AI technologies. Key job responsibilities - Lead research initiatives in generative AI, focusing on LLMs, multimodal models, and frontier AI capabilities - Develop innovative approaches for model optimization, including prompt engineering, few-shot learning, and efficient fine-tuning - Pioneer new methods for AI safety, alignment, and responsible AI development - Design and execute sophisticated experiments to evaluate model performance and behavior - Lead the development of production-ready AI solutions that scale efficiently - Collaborate with product teams to translate research innovations into practical applications - Guide engineering teams in implementing AI models and systems at scale - Author technical papers for top-tier conferences - File patents for novel AI technologies and applications A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our trust-preserving experiences. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the team Who We Are: Trust CX Innovations is a strategic innovation team within Amazon Devices & Services that focuses on advancing AI technology while prioritizing customer trust and experience. Our team operates at the intersection of artificial intelligence, privacy engineering and customer-centric design. Our Mission: To pioneer trustworthy AI innovations that delight customers while setting new standards for privacy and responsible technology development. We aim to transform how Amazon builds AI products by creating solutions that balance innovation with customer trust.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. The Trust CX Innovations team is looking for an Applied Scientist with strong background in Generative AI space to build solutions that help in upholding customer trust for Alexa+. As an Applied Scientist in Trust CX innovations, you will be at the forefront of developing innovative solutions to critical challenges in AI trust and privacy. You'll lead research in trust-preserving machine learning techniques. We are working on revolutionizing the way Amazonians work and collaborate. You will help us achieve new heights of productivity through the power of advanced generative AI technologies. Key job responsibilities - Lead research initiatives in generative AI, focusing on LLMs, multimodal models, and frontier AI capabilities - Develop innovative approaches for model optimization, including prompt engineering, few-shot learning, and efficient fine-tuning - Pioneer new methods for AI safety, alignment, and responsible AI development - Design and execute sophisticated experiments to evaluate model performance and behavior - Lead the development of production-ready AI solutions that scale efficiently - Collaborate with product teams to translate research innovations into practical applications - Guide engineering teams in implementing AI models and systems at scale - Author technical papers for top-tier conferences - File patents for novel AI technologies and applications A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our trust-preserving experiences. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the team Who We Are: Trust CX Innovations is a strategic innovation team within Amazon Devices & Services that focuses on advancing AI technology while prioritizing customer trust and experience. Our team operates at the intersection of artificial intelligence, privacy engineering and customer-centric design. Our Mission: To pioneer trustworthy AI innovations that delight customers while setting new standards for privacy and responsible technology development. We aim to transform how Amazon builds AI products by creating solutions that balance innovation with customer trust.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.