Low-precision arithmetic makes robot localization more efficient

Using different levels of precision for different arithmetic tasks reduces computational burden without compromising performance.

Simultaneous localization and mapping (SLAM) is the core technology of autonomous mobile robots. It involves simultaneously building a map of the robot’s environment and finding the robot’s location within that map.

SLAM is computationally intensive, and deploying it on resource-constrained robots — such as consumer household robots — generally requires techniques for making computations more tractable.

Related content
Two Alexa AI papers present novel methodologies that use vision and language understanding to improve embodied task completion in simulated environments.

One such technique is the use of low-precision floating-point arithmetic, or reducing the number of bits used to represent numbers with decimal points. The technique is popular in deep learning, where halving the number of bits (from the standard 32 to 16) can double computational efficiency with little effect on accuracy.

But applying low-precision arithmetic to SLAM is more complicated. Where deep-learning-based classification models are discrete-valued, SLAM involves solving a nonlinear optimization problem with continuous-valued functions, which require higher accuracy.

At Amazon, we’ve tackled this problem by designing a novel mixed-precision solver, which combines 64-bit (fp64), 32-bit (fp32), and 16-bit (fp16) precisions for nonlinear optimization problems in the SLAM algorithm. This innovation paves the way for faster and greener on-device navigation.

General framework

A SLAM algorithm has two key components: visual odometry and loop closure. Visual odometry gives real-time estimates of the robot’s pose, or its orientation and location on the map, based on the most recent observations. When the robot recognizes that it has arrived at a place that it previously visited, it closes the loop by globally correcting its map and its location estimate.

Related content
A model that estimates depth from 2-D images learns to adjust to differences between images produced by different cameras, reducing error by about 20%.

Both visual odometry and loop closure involve solving nonlinear optimization problems — bundle adjustment (BA) and pose graph optimization (PGO), respectively. To solve them efficiently, SLAM systems typically use approximate methods that recast them as sequences of linearized optimization problems. If the goal is to find the pose estimate x, then each linear problem minimizes the linearized error function, which is the sum of the current error function and its first-order correction. The first-order correction is the product of the Jacobian, which is the matrix of the function’s first-order derivatives, and the update to the pose estimation. The linear problems are typically solved through factorization, using either Cholesky or QR methods. The solution of each linearized optimization problem is the update for the current pose estimate.

The general procedure is to start with the current approximation of x, compute the error function and the Jacobian, solve a linear optimization problem, and update x accordingly, repeating the process until certain stopping criteria are met. At each iteration, the value of the error function is known as the residual, since it’s the residual error left over from the previous iteration.

General framework.png
General framework for mixed-precision nonlinear optimization.

The most expensive computations in the nonlinear optimizations for both BA and PGO are the computation of the Jacobian (about 15% of the optimization time) and the solution of the linear problem (about 60%). Simply solving either problem at half-precision (fp16) from beginning to end will result in lower accuracy and sometimes numerical instability.

To mitigate these difficulties, we regularize and scale the matrices to avoid overflow and rank deficiency. The rank deficiency occurs when columns of the Jacobian are linearly dependent. Through careful experiments, we further identified the computations to be done at precision higher than fp16 and proposed a mixed-precision nonlinear optimization solver.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

We found that, to match the accuracy of the solution in pure double-precision, the following two components have to be computed in precision higher than fp16:

  • The residual must be evaluated in single or higher precision;
  • The update of x, which is a six-degree position-angle update, must be done in double precision.

Although this general optimization framework applies to both BA and PGO, the details vary across the two applications, because of the different structures and properties of the matrices in the linear problems. We thus propose two mixed-precision solving strategies for the relevant linear systems.

Visual odometry

For visual odometry, people traditionally use filter-based methods, which can suffer from large linearization error. Nonlinear optimization-based methods have become more popular in recent years. These methods estimate the position and orientation of the robot by minimizing an error function, which is the difference between the re-projection of landmarks and their observation in the image frame. This procedure is called bundle adjustment because we are adjusting a bundle of light rays to match the projection with the observation.

fp16 SLAM.png
Bundle adjustment, in which “bundles” of light rays are adjusted to match projection with observation.

BA-based visual odometry operates over a sliding window that contains a fixed number of (key) frames. On average, a new key frame comes at 10Hz. The challenge is to solve the BA problem within a given time budget. One popular way to do this is to solve the normal equation that is the equivalent of the linearized optimization problem; this involves the approximation of the Hessian matrix, or the matrix of second-order derivatives of the residual.

Sparsity pattern.png
Sparsity patterns of Hessian matrices from bundle adjustment (left) and pose graph optimization (right).

The BA problem involves two sets of unknown state variables: one indicates the robot’s pose and the other indicates the landmark location. One way to reduce the computational burden of the BA problem is to marginalize the constraints between camera poses and landmarks and focus on the camera poses first. In the SLAM community, this procedure is known as Schur elimination or landmark marginalization.

Related content
Measuring the displacement between location estimates derived from different camera views can help enforce the local consistency vital to navigation.

This marginalization step can greatly reduce the size of the linear system that needs to be solved. For a 50-frame BA problem, the Jacobian matrix is usually of the size 5,500 x 1,000, and the Hessian is of size 1,000 x 1,000. Decoupling constraints reduces the size of the linear system to 300 x 300, small enough to be solved with direct or iterative solvers. However, this strategy requires both the formulation of the Hessian matrix and a partial-elimination step, which are expensive to employ in practice.

Our mixed-precision linear solver, which mixes single and half-precision, is based on the conjugate gradient normal-equation residual (CGNR) method, which is an iterative method directly applied to the linear-optimization problem without explicit formulation of the Hessian.

As in the general framework, a naïve casting of all computations to half-precision will result in lower accuracy. In our experiments, we found that if we compute matrix-vector products in half-precision and all other operations in single precision, we will maintain the overall accuracy of the SLAM pipeline.

Solver comparison.png
A comparison of the naïve half-precision solver (left) and the mixed-precision solver (right) on a single trajectory estimation.
Histogram.png
The cumulative-error histogram for 1,703 trajectory estimations where the VO is solved with mixed precision, half-precision, and double precision, respectively.

The matrix-vector products, which are the major computation in CGNR iterations, usually account for 83% of the computing cost, in terms of number of floating-point operations. That means that, if run on NVIDIA V100 GPUs, the mixed-precision solver could save at least 41% solving time compared to the single-precision linear solver.

Loop closure

In the SLAM pipeline, the local pose estimates from VO usually exhibit large drift, especially in the long run. Loop closure corrects this drift.

Loop closure.png
Illustration of loop closure.

For a real-world mapping estimate, without LC correction, the average trajectory error could be at the order of 0.1 meter, which is not acceptable in practice. This error is reduced to 10-4 meters after applying LC corrections.

 ATE w/o LC (m)ATE with LC (m)
Max4.03E-015.83E-04
99%2.65E-015.71E-04
90%2.00E-015.57E-04
Mean9.72E-023.19E-04

The LC adjustment involves solving a global PGO problem. Like the BA problem, it is a nonlinear optimization problem and can be solved within the same mixed-precision framework. But the linear systems arising from PGO problems are much larger and sparser than those of the BA problem.

Related content
“Body language” and an awareness of social norms help Amazon’s new household robot integrate gracefully into the home.

As more and more loops are closed, the problem size could grow from several hundreds of poses to several thousands of poses. If we measure the size of a matrix by the number of its rows, during loop closure, the size could grow from the order of 100 to the order of 10,000. Directly solving sparse matrices of this size in double precision is challenging, especially considering the time and computation constraints of on-device applications. For a real-world trajectory estimation, the solving time for the PGO problem could grow up to eight seconds with full CPU usage.

Solving times.png
Time for solving PGO problems during trajectory estimation. The x-axis represents the total number of key frames in each pose graph, and the y-axis represents the time for solving each PGO problem.

This results in a different strategy for designing a mixed-precision solver for PGO problems. Due to the sparsity of the Jacobian matrix, our mixed-precision method is still based on the iterative CGNR method. But to accelerate the convergence of the CGNR iterations, we apply a static incomplete Cholesky preconditioner in each iteration. Cholesky factorization decomposes a symmetric linear system into a product of two triangular matrices, meaning that all of their nonzero values are concentrated on one side of a diagonal across the matrix. This decomposition step is expensive, so we do it only once for the whole problem. The computational cost is mostly dominated by the application of the preconditioner, which involves solving two triangular systems. In our timing analysis, this step consumes around 50% of the computation in each linear solving.

To accelerate the optimization, instead of computing matrix-vector products in half-precision, we solve the triangular system in half-precision, keeping all other operations in single precision. With this mixed-precision solver, we could almost match the accuracy of the full-precision solver while reducing computing time by 26% on average.

ATE histogram
Cumulative ATE histogram for solving 800 PGO problems from a real-world trajectory estimation. Each PGO problem is solved with a mixed-precision solver and a single-precision solver, respectively.

Our results across both the VO and LC applications show that because of the high-efficiency and low-energy nature of half-precision arithmetic, mixed-precision solvers could make on-device SLAM faster and greener.

Acknowledgments

The following contributed equally to this work: Tong Qin, applied scientist, Amazon Hardware; Sankalp Dayal, applied-science manager, Hardware; Joydeep Biswas, software development engineer, Amazon Devices; Varada Gopalakrishnan, vice president and distinguished engineer, Hardware; Adam Fineberg, senior principal engineer, Devices; Rahul Bakshi, senior manager of software, machine learning, and mobility, Hardware.

Research areas

Related content

US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, (Bayesian) time series, macroeconomic, as well as basic familiarity with Matlab, R, or Python is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The AWS AI Labs team has a world-leading team of researchers and academics, and we are looking for world-class colleagues to join us and make the AI revolution happen. Our team of scientists have developed the algorithms and models that power AWS computer vision services such as Amazon Rekognition and Amazon Textract. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. AWS is the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems which will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. Our research themes include, but are not limited to: few-shot learning, transfer learning, unsupervised and semi-supervised methods, active learning and semi-automated data annotation, large scale image and video detection and recognition, face detection and recognition, OCR and scene text recognition, document understanding, 3D scene and layout understanding, and geometric computer vision. For this role, we are looking for scientist who have experience working in the intersection of vision and language. We are located in Seattle, Pasadena, Palo Alto (USA) and in Haifa and Tel Aviv (Israel).
RO, Iasi
Amazon’s mission is to be earth’s most customer-centric company and our team is the guardian of our customer’s privacy. Amazon SDO Privacy engineering operates in Austin – TX, US and Iasi, Bucharest – Romania. Our mission is to develop services which will enable every Amazon service operating with personal data to satisfy the privacy rights of Amazon customers. We are working backwards from the customers and world-wide privacy regulations, think long term, and propose solutions which will assure Amazon Privacy compliance. Our external customers are world-wide customers of Amazon Retail Website, Amazon B2B services (e.g. Seller central, App / Skill Developers), and Amazon Subsidiaries. Our internal customers are services within Amazon who operate with personal data, Legal Representatives, and Customer Service Agents. You can opt-in for being part of one of the existing or newly formed engineering teams who will contribute to Amazon mission to meet external customers’ privacy rights: Personal Data Classification, The Right to be forgotten, The right of access, or Digital Markets Act – The Right of Portability. The ideal candidate has a great passion for data and an insatiable desire to learn and innovate. A commitment to team work, hustle and strong communication skills (to both business and technical partners) are absolute requirements. Creating reliable, scalable, and high-performance products requires a sound understanding of the fundamentals of Computer Science and practical experience building large-scale distributed systems. Your solutions will apply to all of Amazon’s consumer and digital businesses including but not limited to Amazon.com, Alexa, Kindle, Amazon Go, Prime Video and more. Key job responsibilities As an data scientist on our team, you will apply the appropriate technologies and best practices to autonomously solve difficult problems. You'll contribute to the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. You will collaborate with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. Your work will directly impact the trust customers place in Amazon Privacy, globally.
JP, 13, Tokyo
The JP Economics team is a central science team working across a variety of topics in the JP Retail business and beyond. We work closely with JP business leaders to drive change at Amazon. We focus on solving long-term, ambiguous and challenging problems, while providing advisory support to help solve short-term business pain points. Key topics include pricing, product selection, delivery speed, profitability, and customer experience. We tackle these issues by building novel economic/econometric models, machine learning systems, and high-impact experiments which we integrate into business, financial, and system-level decision making. Our work is highly collaborative and we regularly partner with JP- EU- and US-based interdisciplinary teams. In this role, you will build ground-breaking, state-of-the-art causal inference models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, econometrics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. Contribute to building a strong data science community in Amazon Asia.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning to help Amazon provide the best experience to our Selling Partners by automatically understanding and addressing their challenges, needs and opportunities? Do you want to build advanced algorithmic systems that are powered by state-of-art ML, such as Natural Language Processing, Large Language Models, Deep Learning, Computer Vision and Causal Modeling, to seamlessly engage with Sellers? Are you excited by the prospect of analyzing and modeling terabytes of data and creating cutting edge algorithms to solve real world problems? Do you like to build end-to-end business solutions and directly impact the profitability of the company and experience of our customers? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Selling Partner Experience Science team. Key job responsibilities Use statistical and machine learning techniques to create the next generation of the tools that empower Amazon's Selling Partners to succeed. Design, develop and deploy highly innovative models to interact with Sellers and delight them with solutions. Work closely with teams of scientists and software engineers to drive real-time model implementations and deliver novel and highly impactful features. Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation. Research and implement novel machine learning and statistical approaches. Lead strategic initiatives to employ the most recent advances in ML in a fast-paced, experimental environment. Drive the vision and roadmap for how ML can continually improve Selling Partner experience. About the team Selling Partner Experience Science (SPeXSci) is a growing team of scientists, engineers and product leaders engaged in the research and development of the next generation of ML-driven technology to empower Amazon's Selling Partners to succeed. We draw from many science domains, from Natural Language Processing to Computer Vision to Optimization to Economics, to create solutions that seamlessly and automatically engage with Sellers, solve their problems, and help them grow. Focused on collaboration, innovation and strategic impact, we work closely with other science and technology teams, product and operations organizations, and with senior leadership, to transform the Selling Partner experience.
GB, London
Are you excited about applying economic models and methods using large data sets to solve real world business problems? Then join the Economic Decision Science (EDS) team. EDS is an economic science team based in the EU Stores business. The teams goal is to optimize and automate business decision making in the EU business and beyond. An internship at Amazon is an opportunity to work with leading economic researchers on influencing needle-moving business decisions using incomparable datasets and tools. It is an opportunity for PhD students and recent PhD graduates in Economics or related fields. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL would be a plus. As an Economics Intern, you will be working in a fast-paced, cross-disciplinary team of researchers who are pioneers in the field. You will take on complex problems, and work on solutions that either leverage existing academic and industrial research, or utilize your own out-of-the-box pragmatic thinking. In addition to coming up with novel solutions and prototypes, you may even need to deliver these to production in customer facing products. Roughly 85% of previous intern cohorts have converted to full time economics employment at Amazon.
US, CA, Cupertino
We're looking for an Applied Scientist to help us secure Amazon's most critical data. In this role, you'll work closely with internal security teams to design and build AR-powered systems that protect our customers' data. You will build on top of existing formal verification tools developed by AWS and develop new methods to apply those tools at scale. You will need to be innovative, entrepreneurial, and adaptable. We move fast, experiment, iterate and then scale quickly, thoughtfully balancing speed and quality. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities Deeply understand AR techniques for analyzing programs and other systems, and keep up with emerging ideas from the research community. Engage with our customers to develop understanding of their needs. Propose and develop solutions that leverage symbolic reasoning services and concepts from programming languages, theorem proving, formal verification and constraint solving. Implement these solutions as services and work with others to deploy them at scale across Payments and Healthcare. Author papers and present your work internally and externally. Train new teammates, mentor others, participate in recruiting and interviewing, and participate in our tactical and strategic planning. About the team Our small team of applied scientists works within a larger security group, supporting thousands of engineers who are developing Amazon's payments and healthcare services. Security is a rich area for automated reasoning. Most other approaches are quite ad-hoc and take a lot of human effort. AR can help us to reason deliberately and systematically, and the dream of provable security is incredibly compelling. We are working to make this happen at scale. We partner closely with our larger security group and with other automated reasoning teams in AWS that develop core reasoning services.
US, NY, New York
Search Thematic Ad Experience (STAX) team within Sponsored Products is looking for a leader to lead a team of talented applied scientists working on cutting-edge science to innovate on ad experiences for Amazon shoppers!. You will manage a team of scientists, engineers, and PMs to innovate new widgets on Amazon Search page to improve shopper experience using state-of-the-art NLP and computer vision models. You will be leading some industry first experiences that has the potential to revolutionize how shopping looks and feels like on Amazon, and e-commerce marketplaces in general. You will have the opportunity to design the vision on how ad experiences look on Amazon search page, and use the combination of advanced techniques and continuous experimentation to realize this vision. Your work will be core to Amazon’s advertising business. You will be a significant contributor in building the future of sponsored advertising, directly impacting the shopper experience for our hundreds of millions of shoppers worldwide, while delivering significant value for hundreds of thousands of advertisers across the purchase journey with ads on Amazon. Key job responsibilities * Be the technical leader in Machine Learning; lead efforts within the team, and collaborate and influence across the organization. * Be a critic, visionary, and execution leader. Invent and test new product ideas that are powered by science that addresses key product gaps or shopper needs. * Set, plan, and execute on a roadmap that strikes the optimal balance between short term delivery and long term exploration. You will influence what we invest in today and tomorrow. * Evangelize the team’s science innovation within the organization, company, and in key conferences (internal and external). * Be ruthless with prioritization. You will be managing a team which is highly sought after. But not all can be done. Have a deep understanding of the tradeoffs involved and be fierce in prioritizing. * Bring clarity, direction, and guidance to help teams navigate through unsolved problems with the goal to elevate the shopper experience. We work on ambiguous problems and the right approach is often unknown. You will bring your rich experience to help guide the team through these ambiguities, while working with product and engineering in crisply defining the science scope and opportunities. * Have strong product and business acumen to drive both shopper improvements and business outcomes. A day in the life * Lead a multidisciplinary team that embodies “customer obsessed science”: inventing brand new approaches to solve Amazon’s unique problems, and using those inventions in software that affects hundreds of millions of customers * Dive deep into our metrics, ongoing experiments to understand how and why they are benefitting our shoppers (or not) * Design, prototype and validate new widgets, techniques, and ideas. Take end-to-end ownership of moving from prototype to final implementation. * Be an advocate and expert for STAX science to leaders and stakeholders inside and outside advertising. About the team We are the Search thematic ads experience team within Sponsored products - a fast growing team of customer-obsessed engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives to drive value for both our customers and advertisers, through continuous innovation. We focus on new ads experiences globally to help shoppers make the most informed purchase decision while helping shortcut the time to discovery that shoppers are highly likely to engage with. We also harvest rich contextual and behavioral signals that are used to optimize our backend models to continually improve the shopper experience. We obsess about our customers and are continuously seeking opportunities to delight them.
US, CA, Palo Alto
Amazon is the 4th most popular site in the US. Our product search engine, one of the most heavily used services in the world, indexes billions of products and serves hundreds of millions of customers world-wide. We are working on a new initiative to transform our search engine into a shopping engine that assists customers with their shopping missions. We look at all aspects of search CX, query understanding, Ranking, Indexing and ask how we can make big step improvements by applying advanced Machine Learning (ML) and Deep Learning (DL) techniques. We’re seeking a thought leader to direct science initiatives for the Search Relevance and Ranking at Amazon. This person will also be a deep learning practitioner/thinker and guide the research in these three areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual search through the use of deep learning . We’re seeking an individual that can enhance the science thinking of our team: The org is made of 60+ applied scientists, (2 Principal scientists and 5 Senior ASMs). This person will lead and shape the science philosophy, planning and strategy for the team, as we push into Deep Learning to solve problems like cold start, discovery and personalization in the Search domain. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California.
JP, 13, Tokyo
Our mission is to help every vendor drive the most significant impact selling on Amazon. Our team invent, test and launch some of the most innovative services, technology, processes for our global vendors. Our new AVS Professional Services (ProServe) team will go deep with our largest and most sophisticated vendor customers, combining elite client-service skills with cutting edge applied science techniques, backed up by Amazon’s 20+ years of experience in Japan. We start from the customer’s problem and work backwards to apply distinctive results that “only Amazon” can deliver. Amazon is looking for a talented and passionate Applied Science Manager to manage our growing team of Applied Scientists and Business Intelligence Engineers to build world class statistical and machine learning models to be delivered directly to our largest vendors, and working closely with the vendors' senior leaders. The Applied Science Manager will set the strategy for the services to invent, collaborating with the AVS business consultants team to determine customer needs and translating them to a science and development roadmap, and finally coordinating its execution through the team. In this position, you will be part of a larger team touching all areas of science-based development in the vendor domain, not limited to Japan-only products, but collaborating with worldwide science and business leaders. Our current projects touch on the areas of causal inference, reinforcement learning, representation learning, anomaly detection, NLP and forecasting. As the AVS ProServe Applied Science Manager, you will be empowered to expand your scope of influence, and use ProServe as an incubator for products that can be expanded to all Amazon vendors, worldwide. We place strong emphasis on talent growth. As the Applied Science Manager, you will be expected in actively growing future Amazon science leaders, and providing mentoring inside and outside of your team. Key job responsibilities The Applied Science Manager is accountable for: (1) Creating a vision, a strategy, and a roadmap tackling the most challenging business questions from our leading vendors, assess quantitatively their feasibility and entitlement, and scale their scope beyond the ProServe team. (2) Coordinate execution of the roadmap, through direct reports, consisting of scientists and business intelligence engineers. (3) Grow and manage a technical team, actively mentoring, developing, and promoting team members. (4) Work closely with other science managers, program/product managers, and business leadership worldwide to scope new areas of growth, creating new partnerships, and proposing new business initiatives. (5) Act as a technical supervisor, able to assess scientific direction, technical design documents, and steer development efforts to maximize project delivery.