Low-precision arithmetic makes robot localization more efficient

Using different levels of precision for different arithmetic tasks reduces computational burden without compromising performance.

Simultaneous localization and mapping (SLAM) is the core technology of autonomous mobile robots. It involves simultaneously building a map of the robot’s environment and finding the robot’s location within that map.

SLAM is computationally intensive, and deploying it on resource-constrained robots — such as consumer household robots — generally requires techniques for making computations more tractable.

Related content
Two Alexa AI papers present novel methodologies that use vision and language understanding to improve embodied task completion in simulated environments.

One such technique is the use of low-precision floating-point arithmetic, or reducing the number of bits used to represent numbers with decimal points. The technique is popular in deep learning, where halving the number of bits (from the standard 32 to 16) can double computational efficiency with little effect on accuracy.

But applying low-precision arithmetic to SLAM is more complicated. Where deep-learning-based classification models are discrete-valued, SLAM involves solving a nonlinear optimization problem with continuous-valued functions, which require higher accuracy.

At Amazon, we’ve tackled this problem by designing a novel mixed-precision solver, which combines 64-bit (fp64), 32-bit (fp32), and 16-bit (fp16) precisions for nonlinear optimization problems in the SLAM algorithm. This innovation paves the way for faster and greener on-device navigation.

General framework

A SLAM algorithm has two key components: visual odometry and loop closure. Visual odometry gives real-time estimates of the robot’s pose, or its orientation and location on the map, based on the most recent observations. When the robot recognizes that it has arrived at a place that it previously visited, it closes the loop by globally correcting its map and its location estimate.

Related content
A model that estimates depth from 2-D images learns to adjust to differences between images produced by different cameras, reducing error by about 20%.

Both visual odometry and loop closure involve solving nonlinear optimization problems — bundle adjustment (BA) and pose graph optimization (PGO), respectively. To solve them efficiently, SLAM systems typically use approximate methods that recast them as sequences of linearized optimization problems. If the goal is to find the pose estimate x, then each linear problem minimizes the linearized error function, which is the sum of the current error function and its first-order correction. The first-order correction is the product of the Jacobian, which is the matrix of the function’s first-order derivatives, and the update to the pose estimation. The linear problems are typically solved through factorization, using either Cholesky or QR methods. The solution of each linearized optimization problem is the update for the current pose estimate.

The general procedure is to start with the current approximation of x, compute the error function and the Jacobian, solve a linear optimization problem, and update x accordingly, repeating the process until certain stopping criteria are met. At each iteration, the value of the error function is known as the residual, since it’s the residual error left over from the previous iteration.

General framework.png
General framework for mixed-precision nonlinear optimization.

The most expensive computations in the nonlinear optimizations for both BA and PGO are the computation of the Jacobian (about 15% of the optimization time) and the solution of the linear problem (about 60%). Simply solving either problem at half-precision (fp16) from beginning to end will result in lower accuracy and sometimes numerical instability.

To mitigate these difficulties, we regularize and scale the matrices to avoid overflow and rank deficiency. The rank deficiency occurs when columns of the Jacobian are linearly dependent. Through careful experiments, we further identified the computations to be done at precision higher than fp16 and proposed a mixed-precision nonlinear optimization solver.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

We found that, to match the accuracy of the solution in pure double-precision, the following two components have to be computed in precision higher than fp16:

  • The residual must be evaluated in single or higher precision;
  • The update of x, which is a six-degree position-angle update, must be done in double precision.

Although this general optimization framework applies to both BA and PGO, the details vary across the two applications, because of the different structures and properties of the matrices in the linear problems. We thus propose two mixed-precision solving strategies for the relevant linear systems.

Visual odometry

For visual odometry, people traditionally use filter-based methods, which can suffer from large linearization error. Nonlinear optimization-based methods have become more popular in recent years. These methods estimate the position and orientation of the robot by minimizing an error function, which is the difference between the re-projection of landmarks and their observation in the image frame. This procedure is called bundle adjustment because we are adjusting a bundle of light rays to match the projection with the observation.

fp16 SLAM.png
Bundle adjustment, in which “bundles” of light rays are adjusted to match projection with observation.

BA-based visual odometry operates over a sliding window that contains a fixed number of (key) frames. On average, a new key frame comes at 10Hz. The challenge is to solve the BA problem within a given time budget. One popular way to do this is to solve the normal equation that is the equivalent of the linearized optimization problem; this involves the approximation of the Hessian matrix, or the matrix of second-order derivatives of the residual.

Sparsity pattern.png
Sparsity patterns of Hessian matrices from bundle adjustment (left) and pose graph optimization (right).

The BA problem involves two sets of unknown state variables: one indicates the robot’s pose and the other indicates the landmark location. One way to reduce the computational burden of the BA problem is to marginalize the constraints between camera poses and landmarks and focus on the camera poses first. In the SLAM community, this procedure is known as Schur elimination or landmark marginalization.

Related content
Measuring the displacement between location estimates derived from different camera views can help enforce the local consistency vital to navigation.

This marginalization step can greatly reduce the size of the linear system that needs to be solved. For a 50-frame BA problem, the Jacobian matrix is usually of the size 5,500 x 1,000, and the Hessian is of size 1,000 x 1,000. Decoupling constraints reduces the size of the linear system to 300 x 300, small enough to be solved with direct or iterative solvers. However, this strategy requires both the formulation of the Hessian matrix and a partial-elimination step, which are expensive to employ in practice.

Our mixed-precision linear solver, which mixes single and half-precision, is based on the conjugate gradient normal-equation residual (CGNR) method, which is an iterative method directly applied to the linear-optimization problem without explicit formulation of the Hessian.

As in the general framework, a naïve casting of all computations to half-precision will result in lower accuracy. In our experiments, we found that if we compute matrix-vector products in half-precision and all other operations in single precision, we will maintain the overall accuracy of the SLAM pipeline.

Solver comparison.png
A comparison of the naïve half-precision solver (left) and the mixed-precision solver (right) on a single trajectory estimation.
Histogram.png
The cumulative-error histogram for 1,703 trajectory estimations where the VO is solved with mixed precision, half-precision, and double precision, respectively.

The matrix-vector products, which are the major computation in CGNR iterations, usually account for 83% of the computing cost, in terms of number of floating-point operations. That means that, if run on NVIDIA V100 GPUs, the mixed-precision solver could save at least 41% solving time compared to the single-precision linear solver.

Loop closure

In the SLAM pipeline, the local pose estimates from VO usually exhibit large drift, especially in the long run. Loop closure corrects this drift.

Loop closure.png
Illustration of loop closure.

For a real-world mapping estimate, without LC correction, the average trajectory error could be at the order of 0.1 meter, which is not acceptable in practice. This error is reduced to 10-4 meters after applying LC corrections.

 ATE w/o LC (m)ATE with LC (m)
Max4.03E-015.83E-04
99%2.65E-015.71E-04
90%2.00E-015.57E-04
Mean9.72E-023.19E-04

The LC adjustment involves solving a global PGO problem. Like the BA problem, it is a nonlinear optimization problem and can be solved within the same mixed-precision framework. But the linear systems arising from PGO problems are much larger and sparser than those of the BA problem.

Related content
“Body language” and an awareness of social norms help Amazon’s new household robot integrate gracefully into the home.

As more and more loops are closed, the problem size could grow from several hundreds of poses to several thousands of poses. If we measure the size of a matrix by the number of its rows, during loop closure, the size could grow from the order of 100 to the order of 10,000. Directly solving sparse matrices of this size in double precision is challenging, especially considering the time and computation constraints of on-device applications. For a real-world trajectory estimation, the solving time for the PGO problem could grow up to eight seconds with full CPU usage.

Solving times.png
Time for solving PGO problems during trajectory estimation. The x-axis represents the total number of key frames in each pose graph, and the y-axis represents the time for solving each PGO problem.

This results in a different strategy for designing a mixed-precision solver for PGO problems. Due to the sparsity of the Jacobian matrix, our mixed-precision method is still based on the iterative CGNR method. But to accelerate the convergence of the CGNR iterations, we apply a static incomplete Cholesky preconditioner in each iteration. Cholesky factorization decomposes a symmetric linear system into a product of two triangular matrices, meaning that all of their nonzero values are concentrated on one side of a diagonal across the matrix. This decomposition step is expensive, so we do it only once for the whole problem. The computational cost is mostly dominated by the application of the preconditioner, which involves solving two triangular systems. In our timing analysis, this step consumes around 50% of the computation in each linear solving.

To accelerate the optimization, instead of computing matrix-vector products in half-precision, we solve the triangular system in half-precision, keeping all other operations in single precision. With this mixed-precision solver, we could almost match the accuracy of the full-precision solver while reducing computing time by 26% on average.

ATE histogram
Cumulative ATE histogram for solving 800 PGO problems from a real-world trajectory estimation. Each PGO problem is solved with a mixed-precision solver and a single-precision solver, respectively.

Our results across both the VO and LC applications show that because of the high-efficiency and low-energy nature of half-precision arithmetic, mixed-precision solvers could make on-device SLAM faster and greener.

Acknowledgments

The following contributed equally to this work: Tong Qin, applied scientist, Amazon Hardware; Sankalp Dayal, applied-science manager, Hardware; Joydeep Biswas, software development engineer, Amazon Devices; Varada Gopalakrishnan, vice president and distinguished engineer, Hardware; Adam Fineberg, senior principal engineer, Devices; Rahul Bakshi, senior manager of software, machine learning, and mobility, Hardware.

Research areas

Related content

US, CA, Santa Clara
About Amazon Health Amazon Health’s mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we (Health Storefront and Shared Tech) are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. Job summary We are seeking an exceptional Applied Scientist to join a team of experts in the field of machine learning, and work together to break new ground in the world of healthcare to make personalized and empathetic care accessible, convenient, and cost-effective. We leverage and train state-of-the-art large-language-models (LLMs) and develop entirely new experiences to help customers find the right products and services to address their health needs. We work on machine learning problems for intent detection, dialogue systems, and information retrieval. You will work in a highly collaborative environment where you can pursue both near-term productization opportunities to make immediate, meaningful customer impacts while pursuing ambitious, long-term research. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. You will get the opportunity to pursue work that makes people's lives better and pushes the envelop of science. Key job responsibilities - Translate product and CX requirements into science metrics and rigorous testing methodologies. - Invent and develop scalable methodologies to evaluate LLM outputs against metrics and guardrails. - Design and implement the best-in-class semantic retrieval system by creating high-quality knowledge base and optimizing embedding models and similarity measures. - Conduct tuning, training, and optimization of LLMs to achieve a compelling CX while reducing operational cost to be scalable. A day in the life In a fast-paced innovation environment, you work closely with product, UX, and business teams to understand customer's challenges. You translate product and business requirements into science problems. You dive deep into challenging science problems, enabling entirely new ML and LLM-driven customer experiences. You identify hypothesis and conduct rapid prototyping to learn quickly. You develop and deploy models at scale to pursue productizations. You mentor junior science team members and help influence our org in scientific best practices. About the team We are the ML Science and Engineering team, with a strong focus on Generative AI. The team consists of top-notch ML Scientists with diverse background in healthcare, robotics, customer analytics, and communication. We are committed to building and deploying the most advanced scientific capabilities and solutions for the products and services at Amazon Health. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, WA, Seattle
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and senior Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
This single-threaded leader will focus on designing experiences and optimizations to monetize Amazon Detail Pages, while improving shopper experience and returns for our advertising customers. This leader will own generating different widgets (thematic, blended, interactive prompt, hybrid merchandising), and the science, tech and signaling systems to enable them for the different category and BuyX teams. This leader will also own science and systems for bidding into ranking systems like Percolate, and for operating the marketplace through allocation and pricing methods. They will own identifying operating points for WW marketplaces in terms of entitlement, RoAS impact and other benchmarks, plus invent ways to operationalize this thinking, all while experimenting to learn from the marketplace. The leader will also own AI generation of shopping pages for monetization (these shopping pages are built on DP content). We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Santa Monica
Amazon Advertising is looking for a motivated and analytical self-starter to help pave the way for the next generation of insights and advertising products. You will use large-scale data, advertising effectiveness knowledge and business information needs of our advertising clients to envision new advertising measurement products and tools. You will facilitate innovation on behalf of our customers through end-to-end delivery of measurement solutions leveraging experiments, machine learning and causal inference. You will partner with our engineering teams to develop and scale successful solutions to production. This role requires strong hands-on skills in terms of effectively working with data, coding, and MLOps. However, the ideal candidate will also bring strong interpersonal and communication skills to engage with cross-functional partners, as well as to stay connected to insights needs of account teams and advertisers. This is a truly exciting and versatile position in that it allows you to apply and develop your hands-on data modeling and coding skills, to work with other scientists on research in new measurement solutions while at the same time partner with cross-functional stakeholders to deliver product impact. Key job responsibilities As an Applied Scientist on the Advertising Incrementality Measurement team you will: - Create new analytical products from conception to prototyping and scaling the product end-to-end through to production. - Scope and define new business problems in the realm of advertising effectiveness. Use machine learning and experiments to develop effective and scalable solutions. - Partner closely with the Engineering team. - Partner with Economists, Data Scientists, and other Applied Scientists to conduct research on advertising effectiveness using machine learning and causal inference. Make findings available via white papers. - Act as a liaison to product teams to help productize new measurement solutions. About the team Advertising Incrementality Measurement combines experiments with econometric analysis and machine learning to provide rigorous causal measurement of advertising effectiveness to internal and external customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Boulder, CO, USA | New York, NY, USA | Santa Monica, CA, USA
US, CA, Santa Clara
Amazon launched the Generative AI Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As an Applied Science Manager in GAIIC, you'll partner with technology and business teams to build new GenAI solutions that delight our customers. You will be responsible for directing a team of data/research/applied scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems. Your team will be working with terabytes of text, images, and other types of data to address real-world problems. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners, as well as the technical background that enables them to interact with and give guidance to data/research/applied scientists and software developers. The ideal candidate will also have a demonstrated ability to think strategically about business, product, and technical issues. Finally, and of critical importance, the candidate will be an excellent technical team manager, someone who knows how to hire, develop, and retain high quality technical talent. About the team Here at AWS, it’s in our nature to learn and be curious about diverse perspectives. Our employee-led affinity groups foster a culture of inclusion that empower employees to feel proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. We have a career path for you no matter what stage you’re in when you start here. We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career- advancing resources here to help you develop into a better-rounded professional. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | San Jose, CA, USA | Santa Clara, CA, USA
GB, London
Amazon Advertising is looking for a Data Scientist to join its brand new initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety, Contextual data processing and classification. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Data Scientist to work on data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you an experienced user of sophisticated analytical techniques that can be applied to answer business questions and chart a sustainable vision? Are you exited by the prospect of communicating insights and recommendations to audiences of varying levels of technical sophistication? Above all, are you an innovator at heart and have a track record of resolving ambiguity to deliver result? As a data scientist, you help our data science team build cutting edge models and measurement solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, define metrics, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Define a long-term science vision for contextual-classification tech, driven fundamentally from the needs of our advertisers and publishers, translating that direction into specific plans for the science team. Interpret complex and interrelated data points and anecdotes to build and communicate this vision. * Collaborate with software engineering teams to Identify and implement elegant statistical and machine learning solutions * Oversee the design, development, and implementation of production level code that handles billions of ad requests. Own the full development cycle: idea, design, prototype, impact assessment, A/B testing (including interpretation of results) and production deployment. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA