Robotic semantic understanding image - 1
Technology developed by Amazon’s Robotics AI organization uses machine learning to map obstacles in warehouses and navigate more fluidly.

The quest to deploy autonomous robots within Amazon fulfillment centers

Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

Every day at Amazon fulfillment centers, more than half a million robots assist with stocking inventory, filling orders, and sorting packages for delivery. These robots follow directions provided by cloud-based algorithms and navigate along a grid of encoded markers. Virtual and physical barriers restrict their interactions with people, as well as where they can and cannot go.

Related content
Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

Now, the company is testing a new class of robots that use artificial intelligence and computer vision to roam freely throughout the fulfillment center (FC). They are helping associates accomplish tasks such as transporting oversized and unwieldy items through the shape-shifting maze of people, pallets, and pillars laid out across the fulfillment center floor, which can cover several dozen football fields.

“This is the first instance of AI being used in autonomous mobility at Amazon,” said Siddhartha Srinivasa, director of Amazon Robotics AI.

Experimental robot
An experimental robot being developed by Amazon’s Robotics AI organization is shown transporting containers filled with large packages through a warehouse environment.

The key to success for these new robots is what Amazon scientists call semantic understanding: the ability of robots to understand the three-dimensional structure of their world in a way that distinguishes each object in it and with knowledge about how each object behaves. With this understanding updated in real-time, the robots can safely navigate cluttered, dynamic environments.

For now, these robots are deployed in a few fulfillment centers where they are performing a narrow set of tasks. Researchers are exploring how to integrate these robots seamlessly and safely with the established processes that Amazon associates follow to fulfill millions of customer orders every day.

“We don’t develop technology for technology’s sake,” said Srinivasa. “We want to develop technology with an end goal in mind of empowering our associates to perform their activities better and safer. If we don’t integrate seamlessly end-to-end, then people will not use our technology.”

Robots today

About 10% of the items ordered from the Amazon Store are too long, wide, or otherwise unwieldy to fit in pods or on conveyor belts in many Amazon FCs. Today, FC employees transport these oversized items across the fulfillment center with pulleys and forklifts, navigating the ever-shifting maze of pods, pallets, robots, and people. The goal is to have robots handle this sometimes awkward task.

Robots in Amazon warehouse
Robots operating in Amazon warehouses must work in an always changing environment in close proximity to people, pallets, and other obstacles.

Ben Kadlec, perception lead for Amazon Robotics AI, is leading the development of the AI for the new robots. His team has deployed the robots for preliminary testing as autonomous transports for non-conveyable items.

To succeed, the robots need to be able to map their environment in real-time and understand what’s a stationary object — and what’s not — and use that information to make on-the-fly decisions about where to go, and how to avoid collisions to safely deliver the oversized items to their intended destinations.

“Navigating through those dynamic spaces is one aspect of the challenge,” he said. “The other one is working in close proximity with humans. That has to do with first recognizing that this thing in front of you is a human and it might move, you might need to keep a further distance from it to be safe, you might need to predict the direction the human is going.”

Teaching robots what’s what

We humans learn about the objects in our environment and how to safely navigate around them through curiosity and trial and error, along with the guidance of family, friends, and teachers. Kadlec and his team use machine learning.

The process begins with semantic understanding, or scene comprehension, based on data collected with the robot’s cameras and LIDAR.

“When the robot takes a picture of the world, it gets pixel values and depth measurements,” explained Lionel Gueguen, an Amazon Robotics AI machine learning applied scientist. “So, it knows at that distance, there are points in space — an obstacle of some sort. But that is the only knowledge the robot has without semantic understanding.”

Semantic understanding
The robot’s AI can differentiate between stationary and moving obstacles by layering semantics on top of sensor data so the robot behaves differently around people, pallets, or pillars in a warehouse.

Semantic understanding, he continued, is about teaching the robot to define that point in space — to determine if it belongs to a person, a pod, or a pillar. Or, if it’s a cable lying across the floor, or a forklift, or another robot.

When these labels are layered on top of the three-dimensional visual representation, the robot can then classify the point in space as stable or mobile and use that information to calculate the safest path to its destination.

“The navigation system does what we call semantically aware planning and navigation,” said Srinivasa. “The intuition is very simple: The way a robot moves around a trash can is probably going to be different from the way it navigates around a person or a precious asset. The only way the robot can know that is if it’s able to identify, ‘Oh that’s the trash can or that’s the person.’ And that’s what our AI is able to do.”

Related content
Preliminary tests show a prototype pinch-grasping robot achieved a 10-fold reduction in damage on items such as books and boxes.

To teach the robots semantics, scientists collected thousands of images taken by the robots as they navigated. Then, teams trace the shape of each object in each image and label it. Data scientists use this labeled data to train a machine learning model that segments and labels each object in the cameras’ field of view, a process known as semantic segmentation.

Layered on top of the semantic understanding are predictive models that teach the robot how to treat each object detected. When it detects a pillar, for example, it knows that pillars are static and will always be there. The team is working on another model to predict the paths of the people the robot encounters, and adjust course accordingly.

“Our work is improving the representation of static obstacles in the present as well as starting to model the near future of where the dynamic obstacles are going to be,” said Gueguen. “And that representation is passed down in such a way that the robot can plan accordingly to, on one hand, avoid static obstacles and on the other hand avoid dynamic obstacles.”

Fulfillment center deployment

Kadlec and his team have deployed a few dozen robots for preliminary testing and refinement at a few fulfillment centers. There, they are moving packages, collecting more data, and delivering insights to the science team on how to improve their real-world performance.

“It’s really exciting,” Kadlec said. “We can see the future scale that we want to be operating at. We see a clear path to being successful.”

Once Kadlec and his colleagues succeed in the full-scale deployment of autonomous mobile robot fleets that can transport precious, oversized packages, they can apply the learnings to additional robots.

“The particular problem we’re going after right now is pretty narrow, but the capability is very general,” Kadlec said.

The road ahead

Among the challenges of deploying free-roaming robots in Amazon fulfillment centers is making them acceptable to associates, Srinivasa noted.

“If the robot sneaks up on you really fast and hits the brake a millimeter before it touches you, that might be functionally safe, but not necessarily acceptable behavior,” he said. “And so, there’s an interesting question around how do you generate behavior that is not only safe and fluent, but also acceptable, that is also legible, which means that it’s human understandable.”

Related content
By managing and automating many of the steps involved in continual learning, Janus is helping Amazon’s latest robots adapt to a changing environment.

Amazon scientists who study human-robot interaction are developing techniques for robots to indicate their next move to other people without bright lights and loud sounds. One way they’re doing this is through imitation learning, where robots watch how people move around each other and learn to imitate the behavior.

The challenge of acceptance, Srinivasa said, is part of the broader challenge of seamlessly integrating robots into the process path at Amazon fulfillment centers.

“We are writing the book of robotics at Amazon,” he said, noting that it’s an ongoing process. “One of the joys of being in a place like Amazon is that we have direct access to and direct contact with our end users. We get to talk to our associates and ask them, ‘How do you feel about this?’ That internal customer feedback is critical to our development process.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, Cambridge
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Cambridge, MassachusettsPosition Responsibilities:Utilize code (Python, R, etc.) to build ML models to solve specific business problems. Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints. Research and implement novel machine learning algorithms and models. Collaborate with researchers, software developers, and business leaders to define product requirements and provide modeling solutions. Communicate verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000