Robotic semantic understanding image - 1
Technology developed by Amazon’s Robotics AI organization uses machine learning to map obstacles in warehouses and navigate more fluidly.

The quest to deploy autonomous robots within Amazon fulfillment centers

Company is testing a new class of robots that use artificial intelligence and computer vision to move freely throughout facilities.

Every day at Amazon fulfillment centers, more than half a million robots assist with stocking inventory, filling orders, and sorting packages for delivery. These robots follow directions provided by cloud-based algorithms and navigate along a grid of encoded markers. Virtual and physical barriers restrict their interactions with people, as well as where they can and cannot go.

Related content
Amazon fulfillment centers use thousands of mobile robots. To keep products moving, Amazon Robotics researchers have crafted unique solutions.

Now, the company is testing a new class of robots that use artificial intelligence and computer vision to roam freely throughout the fulfillment center (FC). They are helping associates accomplish tasks such as transporting oversized and unwieldy items through the shape-shifting maze of people, pallets, and pillars laid out across the fulfillment center floor, which can cover several dozen football fields.

“This is the first instance of AI being used in autonomous mobility at Amazon,” said Siddhartha Srinivasa, director of Amazon Robotics AI.

Experimental robot
An experimental robot being developed by Amazon’s Robotics AI organization is shown transporting containers filled with large packages through a warehouse environment.

The key to success for these new robots is what Amazon scientists call semantic understanding: the ability of robots to understand the three-dimensional structure of their world in a way that distinguishes each object in it and with knowledge about how each object behaves. With this understanding updated in real-time, the robots can safely navigate cluttered, dynamic environments.

For now, these robots are deployed in a few fulfillment centers where they are performing a narrow set of tasks. Researchers are exploring how to integrate these robots seamlessly and safely with the established processes that Amazon associates follow to fulfill millions of customer orders every day.

Related content
Teaching robots to stow items presents a challenge so large it was previously considered impossible — until now.

“We don’t develop technology for technology’s sake,” said Srinivasa. “We want to develop technology with an end goal in mind of empowering our associates to perform their activities better and safer. If we don’t integrate seamlessly end-to-end, then people will not use our technology.”

Robots today

About 10% of the items ordered from the Amazon Store are too long, wide, or otherwise unwieldy to fit in pods or on conveyor belts in many Amazon FCs. Today, FC employees transport these oversized items across the fulfillment center with pulleys and forklifts, navigating the ever-shifting maze of pods, pallets, robots, and people. The goal is to have robots handle this sometimes awkward task.

Robots in Amazon warehouse
Robots operating in Amazon warehouses must work in an always changing environment in close proximity to people, pallets, and other obstacles.

Ben Kadlec, perception lead for Amazon Robotics AI, is leading the development of the AI for the new robots. His team has deployed the robots for preliminary testing as autonomous transports for non-conveyable items.

To succeed, the robots need to be able to map their environment in real-time and understand what’s a stationary object — and what’s not — and use that information to make on-the-fly decisions about where to go, and how to avoid collisions to safely deliver the oversized items to their intended destinations.

“Navigating through those dynamic spaces is one aspect of the challenge,” he said. “The other one is working in close proximity with humans. That has to do with first recognizing that this thing in front of you is a human and it might move, you might need to keep a further distance from it to be safe, you might need to predict the direction the human is going.”

Teaching robots what’s what

We humans learn about the objects in our environment and how to safely navigate around them through curiosity and trial and error, along with the guidance of family, friends, and teachers. Kadlec and his team use machine learning.

The process begins with semantic understanding, or scene comprehension, based on data collected with the robot’s cameras and LIDAR.

“When the robot takes a picture of the world, it gets pixel values and depth measurements,” explained Lionel Gueguen, an Amazon Robotics AI machine learning applied scientist. “So, it knows at that distance, there are points in space — an obstacle of some sort. But that is the only knowledge the robot has without semantic understanding.”

Semantic understanding
The robot’s AI can differentiate between stationary and moving obstacles by layering semantics on top of sensor data so the robot behaves differently around people, pallets, or pillars in a warehouse.

Semantic understanding, he continued, is about teaching the robot to define that point in space — to determine if it belongs to a person, a pod, or a pillar. Or, if it’s a cable lying across the floor, or a forklift, or another robot.

When these labels are layered on top of the three-dimensional visual representation, the robot can then classify the point in space as stable or mobile and use that information to calculate the safest path to its destination.

“The navigation system does what we call semantically aware planning and navigation,” said Srinivasa. “The intuition is very simple: The way a robot moves around a trash can is probably going to be different from the way it navigates around a person or a precious asset. The only way the robot can know that is if it’s able to identify, ‘Oh that’s the trash can or that’s the person.’ And that’s what our AI is able to do.”

Related content
Preliminary tests show a prototype pinch-grasping robot achieved a 10-fold reduction in damage on items such as books and boxes.

To teach the robots semantics, scientists collected thousands of images taken by the robots as they navigated. Then, teams trace the shape of each object in each image and label it. Data scientists use this labeled data to train a machine learning model that segments and labels each object in the cameras’ field of view, a process known as semantic segmentation.

Layered on top of the semantic understanding are predictive models that teach the robot how to treat each object detected. When it detects a pillar, for example, it knows that pillars are static and will always be there. The team is working on another model to predict the paths of the people the robot encounters, and adjust course accordingly.

“Our work is improving the representation of static obstacles in the present as well as starting to model the near future of where the dynamic obstacles are going to be,” said Gueguen. “And that representation is passed down in such a way that the robot can plan accordingly to, on one hand, avoid static obstacles and on the other hand avoid dynamic obstacles.”

Fulfillment center deployment

Kadlec and his team have deployed a few dozen robots for preliminary testing and refinement at a few fulfillment centers. There, they are moving packages, collecting more data, and delivering insights to the science team on how to improve their real-world performance.

“It’s really exciting,” Kadlec said. “We can see the future scale that we want to be operating at. We see a clear path to being successful.”

Once Kadlec and his colleagues succeed in the full-scale deployment of autonomous mobile robot fleets that can transport precious, oversized packages, they can apply the learnings to additional robots.

“The particular problem we’re going after right now is pretty narrow, but the capability is very general,” Kadlec said.

The road ahead

Among the challenges of deploying free-roaming robots in Amazon fulfillment centers is making them acceptable to associates, Srinivasa noted.

“If the robot sneaks up on you really fast and hits the brake a millimeter before it touches you, that might be functionally safe, but not necessarily acceptable behavior,” he said. “And so, there’s an interesting question around how do you generate behavior that is not only safe and fluent, but also acceptable, that is also legible, which means that it’s human understandable.”

Related content
By managing and automating many of the steps involved in continual learning, Janus is helping Amazon’s latest robots adapt to a changing environment.

Amazon scientists who study human-robot interaction are developing techniques for robots to indicate their next move to other people without bright lights and loud sounds. One way they’re doing this is through imitation learning, where robots watch how people move around each other and learn to imitate the behavior.

The challenge of acceptance, Srinivasa said, is part of the broader challenge of seamlessly integrating robots into the process path at Amazon fulfillment centers.

“We are writing the book of robotics at Amazon,” he said, noting that it’s an ongoing process. “One of the joys of being in a place like Amazon is that we have direct access to and direct contact with our end users. We get to talk to our associates and ask them, ‘How do you feel about this?’ That internal customer feedback is critical to our development process.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, CA, Santa Clara
About Amazon Health Amazon Health’s mission is to make it dramatically easier for customers to access the healthcare products and services they need to get and stay healthy. Towards this mission, we (Health Storefront and Shared Tech) are building the technology, products and services, that help customers find, buy, and engage with the healthcare solutions they need. Job summary We are seeking an exceptional Applied Scientist to join a team of experts in the field of machine learning, and work together to break new ground in the world of healthcare to make personalized and empathetic care accessible, convenient, and cost-effective. We leverage and train state-of-the-art large-language-models (LLMs) and develop entirely new experiences to help customers find the right products and services to address their health needs. We work on machine learning problems for intent detection, dialogue systems, and information retrieval. You will work in a highly collaborative environment where you can pursue both near-term productization opportunities to make immediate, meaningful customer impacts while pursuing ambitious, long-term research. You will work on hard science problems that have not been solved before, conduct rapid prototyping to validate your hypothesis, and deploy your algorithmic ideas at scale. You will get the opportunity to pursue work that makes people's lives better and pushes the envelop of science. Key job responsibilities - Translate product and CX requirements into science metrics and rigorous testing methodologies. - Invent and develop scalable methodologies to evaluate LLM outputs against metrics and guardrails. - Design and implement the best-in-class semantic retrieval system by creating high-quality knowledge base and optimizing embedding models and similarity measures. - Conduct tuning, training, and optimization of LLMs to achieve a compelling CX while reducing operational cost to be scalable. A day in the life In a fast-paced innovation environment, you work closely with product, UX, and business teams to understand customer's challenges. You translate product and business requirements into science problems. You dive deep into challenging science problems, enabling entirely new ML and LLM-driven customer experiences. You identify hypothesis and conduct rapid prototyping to learn quickly. You develop and deploy models at scale to pursue productizations. You mentor junior science team members and help influence our org in scientific best practices. About the team We are the ML Science and Engineering team, with a strong focus on Generative AI. The team consists of top-notch ML Scientists with diverse background in healthcare, robotics, customer analytics, and communication. We are committed to building and deploying the most advanced scientific capabilities and solutions for the products and services at Amazon Health. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, WA, Seattle
We are designing the future. If you are in quest of an iterative fast-paced environment, where you can drive innovation through scientific inquiry, and provide tangible benefit to hundreds of thousands of our associates worldwide, this is your opportunity. Come work on the Amazon Worldwide Fulfillment Design & Engineering Team! We are looking for an experienced and senior Research Scientist with background in Ergonomics and Industrial Human Factors, someone that is excited to work on complex real-world challenges for which a comprehensive scientific approach is necessary to drive solutions. Your investigations will define human factor / ergonomic thresholds resulting in design and implementation of safe and efficient workspaces and processes for our associates. Your role will entail assessment and design of manual material handling tasks throughout the entire Amazon network. You will identify fundamental questions pertaining to the human capabilities and tolerances in a myriad of work environments, and will initiate and lead studies that will drive decision making on an extreme scale. .You will provide definitive human factors/ ergonomics input and participate in design with every single design group in our network, including Amazon Robotics, Engineering R&D, and Operations Engineering. You will work closely with our Worldwide Health and Safety organization to gain feedback on designs and work tenaciously to continuously improve our associate’s experience. Key job responsibilities - Collaborating and designing work processes and workspaces that adhere to human factors / ergonomics standards worldwide. - Producing comprehensive and assessments of workstations and processes covering biomechanical, physiological, and psychophysical demands. - Effectively communicate your design rationale to multiple engineering and operations entities. - Identifying gaps in current human factors standards and guidelines, and lead comprehensive studies to redefine “industry best practices” based on solid scientific foundations. - Continuously strive to gain in-depth knowledge of your profession, as well as branch out to learn about intersecting fields, such as robotics and mechatronics. - Travelling to our various sites to perform thorough assessments and gain in-depth operational feedback, approximately 25%-50% of the time. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
This single-threaded leader will focus on designing experiences and optimizations to monetize Amazon Detail Pages, while improving shopper experience and returns for our advertising customers. This leader will own generating different widgets (thematic, blended, interactive prompt, hybrid merchandising), and the science, tech and signaling systems to enable them for the different category and BuyX teams. This leader will also own science and systems for bidding into ranking systems like Percolate, and for operating the marketplace through allocation and pricing methods. They will own identifying operating points for WW marketplaces in terms of entitlement, RoAS impact and other benchmarks, plus invent ways to operationalize this thinking, all while experimenting to learn from the marketplace. The leader will also own AI generation of shopping pages for monetization (these shopping pages are built on DP content). We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Santa Monica
Amazon Advertising is looking for a motivated and analytical self-starter to help pave the way for the next generation of insights and advertising products. You will use large-scale data, advertising effectiveness knowledge and business information needs of our advertising clients to envision new advertising measurement products and tools. You will facilitate innovation on behalf of our customers through end-to-end delivery of measurement solutions leveraging experiments, machine learning and causal inference. You will partner with our engineering teams to develop and scale successful solutions to production. This role requires strong hands-on skills in terms of effectively working with data, coding, and MLOps. However, the ideal candidate will also bring strong interpersonal and communication skills to engage with cross-functional partners, as well as to stay connected to insights needs of account teams and advertisers. This is a truly exciting and versatile position in that it allows you to apply and develop your hands-on data modeling and coding skills, to work with other scientists on research in new measurement solutions while at the same time partner with cross-functional stakeholders to deliver product impact. Key job responsibilities As an Applied Scientist on the Advertising Incrementality Measurement team you will: - Create new analytical products from conception to prototyping and scaling the product end-to-end through to production. - Scope and define new business problems in the realm of advertising effectiveness. Use machine learning and experiments to develop effective and scalable solutions. - Partner closely with the Engineering team. - Partner with Economists, Data Scientists, and other Applied Scientists to conduct research on advertising effectiveness using machine learning and causal inference. Make findings available via white papers. - Act as a liaison to product teams to help productize new measurement solutions. About the team Advertising Incrementality Measurement combines experiments with econometric analysis and machine learning to provide rigorous causal measurement of advertising effectiveness to internal and external customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Boulder, CO, USA | New York, NY, USA | Santa Monica, CA, USA
US, CA, Santa Clara
Amazon launched the Generative AI Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate the use of Generative AI to solve business and operational problems and promote innovation in their organization (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As an Applied Science Manager in GAIIC, you'll partner with technology and business teams to build new GenAI solutions that delight our customers. You will be responsible for directing a team of data/research/applied scientists, deep learning architects, and ML engineers to build generative AI models and pipelines, and deliver state-of-the-art solutions to customer’s business and mission problems. Your team will be working with terabytes of text, images, and other types of data to address real-world problems. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners, as well as the technical background that enables them to interact with and give guidance to data/research/applied scientists and software developers. The ideal candidate will also have a demonstrated ability to think strategically about business, product, and technical issues. Finally, and of critical importance, the candidate will be an excellent technical team manager, someone who knows how to hire, develop, and retain high quality technical talent. About the team Here at AWS, it’s in our nature to learn and be curious about diverse perspectives. Our employee-led affinity groups foster a culture of inclusion that empower employees to feel proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. We have a career path for you no matter what stage you’re in when you start here. We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career- advancing resources here to help you develop into a better-rounded professional. We are open to hiring candidates to work out of one of the following locations: San Francisco, CA, USA | San Jose, CA, USA | Santa Clara, CA, USA
GB, London
Amazon Advertising is looking for a Data Scientist to join its brand new initiative that powers Amazon’s contextual advertising products. Advertising at Amazon is a fast-growing multi-billion dollar business that spans across desktop, mobile and connected devices; encompasses ads on Amazon and a vast network of hundreds of thousands of third party publishers; and extends across US, EU and an increasing number of international geographies. The Supply Quality organization has the charter to solve optimization problems for ad-programs in Amazon and ensure high-quality ad-impressions. We develop advanced algorithms and infrastructure systems to optimize performance for our advertisers and publishers. We are focused on solving a wide variety of problems in computational advertising like traffic quality prediction (robot and fraud detection), Security forensics and research, Viewability prediction, Brand Safety, Contextual data processing and classification. Our team includes experts in the areas of distributed computing, machine learning, statistics, optimization, text mining, information theory and big data systems. We are looking for a dynamic, innovative and accomplished Data Scientist to work on data science initiatives for contextual data processing and classification that power our contextual advertising solutions. Are you an experienced user of sophisticated analytical techniques that can be applied to answer business questions and chart a sustainable vision? Are you exited by the prospect of communicating insights and recommendations to audiences of varying levels of technical sophistication? Above all, are you an innovator at heart and have a track record of resolving ambiguity to deliver result? As a data scientist, you help our data science team build cutting edge models and measurement solutions to power our contextual classification technology. As this is a new initiative, you will get an opportunity to act as a thought leader, work backwards from the customer needs, dive deep into data to understand the issues, define metrics, conceptualize and build algorithms and collaborate with multiple cross-functional teams. Key job responsibilities * Define a long-term science vision for contextual-classification tech, driven fundamentally from the needs of our advertisers and publishers, translating that direction into specific plans for the science team. Interpret complex and interrelated data points and anecdotes to build and communicate this vision. * Collaborate with software engineering teams to Identify and implement elegant statistical and machine learning solutions * Oversee the design, development, and implementation of production level code that handles billions of ad requests. Own the full development cycle: idea, design, prototype, impact assessment, A/B testing (including interpretation of results) and production deployment. * Promote the culture of experimentation and applied science at Amazon. * Demonstrated ability to meet deadlines while managing multiple projects. * Excellent communication and presentation skills working with multiple peer groups and different levels of management * Influence and continuously improve a sustainable team culture that exemplifies Amazon’s leadership principles. We are open to hiring candidates to work out of one of the following locations: London, GBR
JP, 13, Tokyo
We are seeking a Principal Economist to be the science leader in Amazon's customer growth and engagement. The wide remit covers Prime, delivery experiences, loyalty program (Amazon Points), and marketing. We look forward to partnering with you to advance our innovation on customers’ behalf. Amazon has a trailblazing track record of working with Ph.D. economists in the tech industry and offers a unique environment for economists to thrive. As an economist at Amazon, you will apply the frontier of econometric and economic methods to Amazon’s terabytes of data and intriguing customer problems. Your expertise in building reduced-form or structural causal inference models is exemplary in Amazon. Your strategic thinking in designing mechanisms and products influences how Amazon evolves. In this role, you will build ground-breaking, state-of-the-art econometric models to guide multi-billion-dollar investment decisions around the global Amazon marketplaces. You will own, execute, and expand a research roadmap that connects science, business, and engineering and contributes to Amazon's long term success. As one of the first economists outside North America/EU, you will make an outsized impact to our international marketplaces and pioneer in expanding Amazon’s economist community in Asia. The ideal candidate will be an experienced economist in empirical industrial organization, labour economics, or related structural/reduced-form causal inference fields. You are a self-starter who enjoys ambiguity in a fast-paced and ever-changing environment. You think big on the next game-changing opportunity but also dive deep into every detail that matters. You insist on the highest standards and are consistent in delivering results. Key job responsibilities - Work with Product, Finance, Data Science, and Data Engineering teams across the globe to deliver data-driven insights and products for regional and world-wide launches. - Innovate on how Amazon can leverage data analytics to better serve our customers through selection and pricing. - Contribute to building a strong data science community in Amazon Asia. We are open to hiring candidates to work out of one of the following locations: Tokyo, 13, JPN
DE, BE, Berlin
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU | Berlin, DEU
DE, BY, Munich
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Munich, BE, DEU | Munich, BY, DEU | Munich, DEU
IT, MI, Milan
Ops Integration: Concessions team is looking for a motivated, creative and customer obsessed Snr. Applied Scientist with a strong machine learning background, to develop advanced analytics models (Computer Vision, LLMs, etc.) that improve customer experiences We are the voice of the customer in Amazon’s operations, and we take that role very seriously. If you join this team, you will be a key contributor to delivering the Factory of the Future: leveraging Internet of Things (IoT) and advanced analytics to drive tangible, operational change on the ground. You will collaborate with a wide range of stakeholders (You will partner with Research and Applied Scientists, SDEs, Technical Program Managers, Product Managers and Business Leaders) across the business to develop and refine new ways of assessing challenges within Amazon operations. This role will combine Amazon’s oldest Leadership Principle, with the latest analytical innovations, to deliver business change at scale and efficiently The ideal candidate will have deep and broad experience with theoretical approaches and practical implementations of vision techniques for task automation. They will be a motivated self-starter who can thrive in a fast-paced environment. They will be passionate about staying current with sensing technologies and algorithms in the broader machine vision industry. They will enjoy working in a multi-disciplinary team of engineers, scientists and business leaders. They will seek to understand processes behind data so their recommendations are grounded. Key job responsibilities Your solutions will drive new system capabilities with global impact. You will design highly scalable, large enterprise software solutions involving computer vision. You will develop complex perception algorithms integrating across multiple sensing devices. You will develop metrics to quantify the benefits of a solution and influence project resources. You will validate system performance and use insights from your live models to drive the next generation of model development. Common tasks include: • Research, design, implement and evaluate complex perception and decision making algorithms integrating across multiple disciplines • Work closely with software engineering teams to drive scalable, real-time implementations • Collaborate closely with team members on developing systems from prototyping to production level • Collaborate with teams spread all over the world • Track general business activity and provide clear, compelling management reports on a regular basis We are open to hiring candidates to work out of one of the following locations: Milan, MI, ITA