The National Science Foundation logo is seen on an exterior brick wall at NSF headquarters
The U.S. National Science Foundation and Amazon have announced the recipients of 13 selected projects from the program's most recent call for submissions. The awardees have proposed projects that address unfairness and bias in artificial intelligence and machine learning technologies, develop principles for human interaction with artificial intelligence systems, and theoretical frameworks for algorithms, and improve accessibility of speech recognition technology.
JHVEPhoto — stock.adobe.com

U.S. National Science Foundation, in collaboration with Amazon, announces latest Fairness in AI grant projects

Thirteen new projects focus on ensuring fairness in AI algorithms and the systems that incorporate them.

  1. In 2019, the U.S. National Science Foundation (NSF) and Amazon announced a collaboration — the Fairness in AI program — to strengthen and support fairness in artificial intelligence and machine learning.

    To date, in two rounds of proposal submissions, NSF has awarded 21 research grants in areas such as ensuring fairness in AI algorithms and the systems that incorporate them, using AI to promote equity in society, and developing principles for human interaction with AI-based systems.

    In June of 2021, Amazon and the NSF opened the third round of submissions with a focus on theoretical and algorithmic foundations; principles for human interaction with AI systems; technologies such as natural language understanding and computer vision; and applications including hiring decisions, education, criminal justice, and human services.

    Now Amazon and NSF are announcing the recipients of 13 selected projects from that latest call for submissions.

    The awardees, who collectively will receive up to $9.5 million in financial support, have proposed projects that address unfairness and bias in artificial intelligence and machine learning technologies, develop principles for human interaction with artificial intelligence systems, and theoretical frameworks for algorithms, and improve accessibility of speech recognition technology.

    “We are thrilled to share NSF’s selection of thirteen Fairness in AI proposals from talented researchers across the United States,” said Prem Natarajan, Alexa AI vice president of Natural Understanding. “The increasing prevalence of AI in our everyday lives calls for continued multi-sector investments into advancing their trustworthiness and robustness against bias. Amazon is proud to have partnered with the NSF for the past three years to support this critically important research area.”

    Amazon, which provides partial funding for the program, does not participate in the grant-selection process.

    “These awards are part of NSF's commitment to pursue scientific discoveries that enable us to achieve the full spectrum of artificial intelligence potential at the same time we address critical questions about their uses and impacts," said Wendy Nilsen, deputy division director for NSF's Information and Intelligent Systems Division.

    More information about the Fairness in AI program is available on NSF website, and via their program update. Below is the list of the 2022 awardees, and an overview of their projects.

  2. An interpretable AI framework for care of critically ill patients involving matching and decision trees

    “This project introduces a framework for interpretable, patient-centered causal inference and policy design for in-hospital patient care. This framework arose from a challenging problem, which is how to treat critically ill patients who are at risk for seizures (subclinical seizures) that can severely damage a patient's brain. In this high-stakes application of artificial intelligence, the data are complex, including noisy time-series, medical history, and demographic information. The goal is to produce interpretable causal estimates and policy decisions, allowing doctors to understand exactly how data were combined, permitting better troubleshooting, uncertainty quantification, and ultimately, trust. The core of the project's framework consists of novel and sophisticated matching techniques, which match each treated patient in the dataset with other (similar) patients who were not treated. Matching emulates a randomized controlled trial, allowing the effect of the treatment to be estimated for each patient, based on the outcomes from their matched group. A second important element of the framework involves interpretable policy design, where sparse decision trees will be used to identify interpretable subgroups of individuals who should receive similar treatments.”

    • Principal investigator: Cynthia Rudin
    • Co-principal investigators: Alexander Volfovsky, Sudeepa Roy
    • Organization: Duke University
    • Award amount: $625,000

    Project description

  3. Fair representation learning: fundamental trade-offs and algorithms

    “Artificial intelligence-based computer systems are increasingly reliant on effective information representation in order to support decision making in domains ranging from image recognition systems to identity control through face recognition. However, systems that rely on traditional statistics and prediction from historical or human-curated data also naturally inherit any past biased or discriminative tendencies. The overarching goal of the award is to mitigate this problem by using information representations that maintain its utility while eliminating information that could lead to discrimination against subgroups in a population. Specifically, this project will study the different trade-offs between utility and fairness of different data representations, and then identify solutions to reduce the gap to the best trade-off. Then, new representations and corresponding algorithms will be developed guided by such trade-off analysis. The investigators will provide performance limits based on the developed theory, and also evidence of efficacy in order to obtain fair machine learning systems and to gain societal trust. The application domain used in this research is face recognition systems. The undergraduate and graduate students who participate in the project will be trained to conduct cutting-edge research to integrate fairness into artificial intelligent based systems.”

    • Principal investigator: Vishnu Boddeti
    • Organization: Michigan State University
    • Award amount: $331,698

    Project description

  4. A new paradigm for the evaluation and training of inclusive automatic speech recognition

    “Automatic speech recognition can improve your productivity in small ways: rather than searching for a song, a product, or an address using a graphical user interface, it is often faster to accomplish these tasks using automatic speech recognition. For many groups of people, however, speech recognition works less well, possibly because of regional accents, or because of second-language accent, or because of a disability. This Fairness in AI project defines a new way of thinking about speech technology. In this new way of thinking, an automatic speech recognizer is not considered to work well unless it works well for all users, including users with regional accents, second-language accents, and severe disabilities. There are three sub-projects. The first sub-project will create black-box testing standards that speech technology researchers can use to test their speech recognizers, in order to test how useful their speech recognizer will be for different groups of people. For example, if a researcher discovers that their product works well for some people, but not others, then the researcher will have the opportunity to gather more training data, and to perform more development, in order to make sure that the under-served community is better-served. The second sub-project will create glass-box testing standards that researchers can use to debug inclusivity problems. For example, if a speech recognizer has trouble with a particular dialect, then glass-box methods will identify particular speech sounds in that dialect that are confusing the recognizer, so that researchers can more effectively solve the problem. The third sub-project will create new methods for training a speech recognizer in order to guarantee that it works equally well for all of the different groups represented in available data. Data will come from podcasts and the Internet. Speakers will be identified as members of a particular group if and only if they declare themselves to be members of that group. All of the developed software will be distributed open-source.”

    • Principal investigator: Mark Hasegawa-Johnson
    • Co-principal investigators: Zsuzsanna Fagyal, Najim Dehak, Piotr Zelasko, Laureano Moro-Velazquez
    • Organization: University of Illinois at Urbana-Champaign
    • Award amount: $500,000

    Project description

  5. A normative economic approach to fairness in AI

    “A vast body of work in algorithmic fairness is devoted to preventing artificial intelligence (AI) from exacerbating societal biases. The predominant viewpoints in this literature equates fairness with lack of bias or seeks to achieve some form of statistical parity between demographic groups. By contrast, this project pursues alternative approaches rooted in normative economics, the field that evaluates policies and programs by asking "what should be". The work is driven by two observations. First, fairness to individuals and groups can be realized according to people’s preferences represented in the form of utility functions. Second, traditional notions of algorithmic fairness may be at odds with welfare (the overall utility of groups), including the welfare of those groups the fairness criteria intend to protect. The goal of this project is to establish normative economic approaches as a central tool in the study of fairness in AI. Towards this end the team pursues two research questions. First, can the perspective of normative economics be reconciled with existing approaches to fairness in AI? Second, how can normative economics be drawn upon to rethink what fairness in AI should be? The project will integrate theoretical and algorithmic advances into real systems used to inform refugee resettlement decisions. The system will be examined from a fairness viewpoint, with the goal of ultimately ensuring fairness guarantees and welfare.”

    • Principal investigator: Yiling Chen
    • Co-principal investigator: Ariel Procaccia
    • Organization: Harvard University
    • Award amount: $560,345

    Project description

  6. Advancing optimization for threshold-agnostic fair AI systems

    “Artificial intelligence (AI) and machine learning technologies are being used in high-stakes decision-making systems like lending decision, employment screening, and criminal justice sentencing. A new challenge arising with these AI systems is avoiding the unfairness they might introduce and that can lead to discriminatory decisions for protected classes. Most AI systems use some kinds of thresholds to make decisions. This project aims to improve fairness-aware AI technologies by formulating threshold-agnostic metrics for decision making. In particular, the research team will improve the training procedures of fairness-constrained AI models to make the model adaptive to different contexts, applicable to different applications, and subject to emerging fairness constraints. The success of this project will yield a transferable approach to improve fairness in various aspects of society by eliminating the disparate impacts and enhancing the fairness of AI systems in the hands of the decision makers. Together with AI practitioners, the researchers will integrate the techniques in this project into real-world systems such as education analytics. This project will also contribute to training future professionals in AI and machine learning and broaden this activity by including training high school students and under-represented undergraduates.”

    • Principal investigator: Tianbao Yang
    • Co-principal investigators: Qihang Lin, Mingxuan Sun
    • Organization: University of Iowa
    • Award amount: $500,000

    Project description

  7. Toward fair decision making and resource allocation with application to AI-assisted graduate admission and degree completion

    “Machine learning systems have become prominent in many applications in everyday life, such as healthcare, finance, hiring, and education. These systems are intended to improve upon human decision-making by finding patterns in massive amounts of data, beyond what can be intuited by humans. However, it has been demonstrated that these systems learn and propagate similar biases present in human decision-making. This project aims to develop general theory and techniques on fairness in AI, with applications to improving retention and graduation rates of under-represented groups in STEM graduate programs. Recent research has shown that simply focusing on admission rates is not sufficient to improve graduation rates. This project is envisioned to go beyond designing "fair classifiers" such as fair graduate admission that satisfy a static fairness notion in a single moment in time, and designs AI systems that make decisions over a period of time with the goal of ensuring overall long-term fair outcomes at the completion of a process. The use of data-driven AI solutions can allow the detection of patterns missed by humans, to empower targeted intervention and fair resource allocation over the course of an extended period of time. The research from this project will contribute to reducing bias in the admissions process and improving completion rates in graduate programs as well as fair decision-making in general applications of machine learning.”

    • Principal investigator: Furong Huang
    • Co-principal investigators: Min Wu, Dana Dachman-Soled
    • Organization: University of Maryland, College Park
    • Award amount: $625,000

    Project description

  8. BRMI — bias reduction in medical information

    “This award, Bias Reduction In Medical Information (BRIMI), focuses on using artificial intelligence (AI) to detect and mitigate biased, harmful, and/or false health information that disproportionately hurts minority groups in society. BRIMI offers outsized promise for increased equity in health information, improving fairness in AI, medicine, and in the information ecosystem online (e.g., health websites and social media content). BRIMI's novel study of biases stands to greatly advance the understanding of the challenges that minority groups and individuals face when seeking health information. By including specific interventions for both patients and doctors and advancing the state-of-the-art in public health and fact checking organizations, BRIMI aims to inform public policy, increase the public's critical literacy, and improve the well-being of historically under-served patients. The award includes significant outreach efforts, which will engage minority communities directly in our scientific process; broad stakeholder engagement will ensure that the research approach to the groups studied is respectful, ethical, and patient-centered. The BRIMI team is composed of academics, non-profits, and industry partners, thus improving collaboration and partnerships across different sectors and multiple disciplines. The BRIMI project will lead to fundamental research advances in computer science, while integrating deep expertise in medical training, public health interventions, and fact checking. BRIMI is the first large scale computational study of biased health information of any kind. This award specifically focuses on bias reduction in the health domain; its foundational computer science advances and contributions may generalize to other domains, and it will likely pave the way for studying bias in other areas such as politics and finances.”

    • Principal investigator: Shiri Dori-Hacohen
    • Co-principal investigators: Sherry Pagoto, Scott Hale
    • Organization: University of Connecticut
    • Award amount: $392,994

    Project description

  9. A novel paradigm for fairness-aware deep learning models on data streams

    “Massive amounts of information are transferred constantly between different domains in the form of data streams. Social networks, blogs, online businesses, and sensors all generate immense data streams. Such data streams are received in patterns that change over time. While this data can be assigned to specific categories, objects and events, their distribution is not constant. These categories are subject to distribution shifts. These distribution shifts are often due to the changes in the underlying environmental, geographical, economic, and cultural contexts. For example, the risks levels in loan applications have been subject to distribution shifts during the COVID-19 pandemic. This is because loan risks are based on factors associated to the applicants, such as employment status and income. Such factors are usually relatively stable, but have changed rapidly due to the economic impact of the pandemic. As a result, existing loan recommendation systems need to be adapted to limited examples. This project will develop open software to help users evaluate online fairness-in algorithms, mitigate potential biases, and examine utility-fairness trade-offs. It will implement two real-world applications: online crime event recognition from video data and online purchase behavior prediction from click-stream data. To amplify the impact of this project in research and education, this project will leverage STEM programs for students with diverse backgrounds, gender and race/ethnicity. This project includes activities including seminars, workshops, short courses, and research projects for students.”

    • Principal investigator: Feng Chen
    • Co-principal investigators: Latifur Khan, Xintao Wu, Christan Grant
    • Organization: University of Texas at Dallas
    • Award amount: $392,993

    Project description

  10. A human-centered approach to developing accessible and reliable machine translation

    “This Fairness in AI project aims to develop technology to reliably enhance cross-lingual communication in high-stakes contexts, such as when a person needs to communicate with someone who does not speak their language to get health care advice or apply for a job. While machine translation technology is frequently used in these conditions, existing systems often make errors that can have severe consequences for a patient or a job applicant. Further, it is challenging for people to know when automatic translations might be wrong when they do not understand the source or target language for translation. This project addresses this issue by developing accessible and reliable machine translation for lay users. It will provide mechanisms to guide users to recognize and recover from translation errors, and help them make better decisions given imperfect translations. As a result, more people will be able to use machine translation reliably to communicate across language barriers, which can have far-reaching positive consequences on their lives."

    • Principal investigator: Marine Carpuat
    • Co-principal investigators: Niloufar Salehi, Ge Gao
    • Organization: University of Maryland, College Park
    • Award amount: $392,993

    Project description

  11. AI algorithms for fair auctions, pricing, and marketing

    “This project develops algorithms for making fair decisions in AI-mediated auctions, pricing, and marketing, thus advancing national prosperity and economic welfare. The deployment of AI systems in business settings has thrived due to direct access to consumer data, the capability to implement personalization, and the ability to run algorithms in real-time. For example, advertisements users see are personalized since advertisers are willing to bid more in ad display auctions to reach users with particular demographic features. Pricing decisions on ride-sharing platforms or interest rates on loans are customized to the consumer's characteristics in order to maximize profit. Marketing campaigns on social media platforms target users based on the ability to predict who they will be able to influence in their social network. Unfortunately, these applications exhibit discrimination. Discriminatory targeting in housing and job ad auctions, discriminatory pricing for loans and ride-hailing services, and disparate treatment of social network users by marketing campaigns to exclude certain protected groups have been exposed. This project will develop theoretical frameworks and AI algorithms that ensure consumers from protected groups are not harmfully discriminated against in these settings. The new algorithms will facilitate fair conduct of business in these applications. The project also supports conferences that bring together practitioners, policymakers, and academics to discuss the integration of fair AI algorithms into law and practice.”

    • Principal investigator: Adam Elmachtoub
    • Co-principal investigators: Shipra Agrawal, Rachel Cummings, Christian Kroer, Eric Balkanski
    • Organization: Columbia University
    • Award amount: $392,993

    Project description

  12. Using explainable AI to increase equity and transparency in the juvenile justice system’s use of risk scores

    “Throughout the United States, juvenile justice systems use juvenile risk and need-assessment (JRNA) scores to identify the likelihood a youth will commit another offense in the future. This risk assessment score is then used by juvenile justice practitioners to inform how to intervene with a youth to prevent reoffending (e.g., referring youth to a community-based program vs. placing a youth in a juvenile correctional center). Unfortunately, most risk assessment systems lack transparency and often the reasons why a youth received a particular score are unclear. Moreover, how these scores are used in the decision making process is sometimes not well understood by families and youth affected by such decisions. This possibility is problematic because it can hinder individuals’ buy-in to the intervention recommended by the risk assessment as well as mask potential bias in those scores (e.g., if youth of a particular race or gender have risk scores driven by a particular item on the assessment). To address this issue, project researchers will develop automated, computer-generated explanations for these risk scores aimed at explaining how these scores were produced. Investigators will then test whether these better-explained risk scores help youth and juvenile justice decision makers understand the risk score a youth is given. In addition, the team of researchers will investigate whether these risk scores are working equally well for different groups of youth (for example, equally well for boys and for girls) and identify any potential biases in how they are being used in an effort to understand how equitable the decision making process is for demographic groups based on race and gender. The project is embedded within the juvenile justice system and aims to evaluate how real stakeholders understand how the risk scores are generated and used within that system based on actual juvenile justice system data.”

    • Principal investigator: Trent Buskirk
    • Co-principal investigators: Kelly Murphy
    • Organization: Bowling Green State University
    • Award amount: $392,993

    Project description

  13. Breaking the tradeoff barrier in algorithmic fairness

    “In order to be robust and trustworthy, algorithmic systems need to usefully serve diverse populations of users. Standard machine learning methods can easily fail in this regard, e.g. by optimizing for majority populations represented within their training data at the expense of worse performance on minority populations. A large literature on "algorithmic fairness" has arisen to address this widespread problem. However, at a technical level, this literature has viewed various technical notions of "fairness" as constraints, and has therefore viewed "fair learning" through the lens of constrained optimization. Although this has been a productive viewpoint from the perspective of algorithm design, it has led to tradeoffs being centered as the central object of study in "fair machine learning". In the standard framing, adding new protected populations, or quantitatively strengthening fairness constraints, necessarily leads to decreased accuracy overall and within each group. This has the effect of pitting the interests of different stakeholders against one another, and making it difficult to build consensus around "fair machine learning" techniques. The over-arching goal of this project is to break through this "fairness/accuracy tradeoff" paradigm.”

    • Principal investigator: Aaron Roth
    • Co-principal investigator: Michael Kearns
    • Organization: University of Pennsylvania
    • Award amount: $392,992

    Project description

  14. Advancing deep learning towards spatial fairness

    “The goal of spatial fairness is to reduce biases that have significant linkage to the locations or geographical areas of data samples. Such biases, if left unattended, can cause or exacerbate unfair distribution of resources, social division, spatial disparity, and weaknesses in resilience or sustainability. Spatial fairness is urgently needed for the use of artificial intelligence in a large variety of real-world problems such as agricultural monitoring and disaster management. Agricultural products, including crop maps and acreage estimates, are used to inform important decisions such as the distribution of subsidies and providing farm insurance. Inaccuracies and inequities produced by spatial biases adversely affect these decisions. Similarly, effective and fair mapping of natural disasters such as floods or fires is critical to inform live-saving actions and quantify damages and risks to public infrastructures, which is related to insurance estimation. Machine learning, in particular deep learning, has been widely adopted for spatial datasets with promising results. However, straightforward applications of machine learning have found limited success in preserving spatial fairness due to the variation of data distribution, data quantity, and data quality. The goal of this project is to develop a new generation of learning frameworks to explicitly preserve spatial fairness. The results and code will be made freely available and integrated into existing geospatial software. The methods will also be tested for incorporation in existing real systems (crop and water monitoring).”

    • Principal investigator: Xiaowei Jia
    • Co-principal investigators: Sergii Skakun, Yiqun Xie
    • Organization: University of Pittsburgh
    • Award amount: $755,098

    Project description

Research areas

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for a Research Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Research Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
CA, ON, Toronto
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
US, WA, Seattle
As part of the AWS Solutions organization, we have a vision to provide business applications, leveraging Amazon’s unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers’ businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. We blend vision with curiosity and Amazon’s real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. The Team Just Walk Out (JWO) is a new kind of store with no lines and no checkout—you just grab and go! Customers simply use the Amazon Go app to enter the store, take what they want from our selection of fresh, delicious meals and grocery essentials, and go! Our checkout-free shopping experience is made possible by our Just Walk Out Technology, which automatically detects when products are taken from or returned to the shelves and keeps track of them in a virtual cart. When you’re done shopping, you can just leave the store. Shortly after, we’ll charge your account and send you a receipt. Check it out at amazon.com/go. Designed and custom-built by Amazonians, our Just Walk Out Technology uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning. Innovation is part of our DNA! Our goal is to be Earths’ most customer centric company and we are just getting started. We need people who want to join an ambitious program that continues to push the state of the art in computer vision, machine learning, distributed systems and hardware design. Key job responsibilities Everyone on the team needs to be entrepreneurial, wear many hats and work in a highly collaborative environment that’s more startup than big company. We’ll need to tackle problems that span a variety of domains: computer vision, image recognition, machine learning, real-time and distributed systems. As an Applied Scientist, you will help solve a variety of technical challenges and mentor other scientists. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved at scale before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. A key focus of this role will be developing and implementing advanced visual reasoning systems that can understand complex spatial relationships and object interactions in real-time. You'll work on designing autonomous AI agents that can make intelligent decisions based on visual inputs, understand customer behavior patterns, and adapt to dynamic retail environments. This includes developing systems that can perform complex scene understanding, reason about object permanence, and predict customer intentions through visual cues. About the team AWS Solutions As part of the AWS solutions organization, we have a vision to provide business applications, leveraging Amazon's unique experience and expertise, that are used by millions of companies worldwide to manage day-to-day operations. We will accomplish this by accelerating our customers' businesses through delivery of intuitive and differentiated technology solutions that solve enduring business challenges. we blend vision with curiosity and Amazon's real-world experience to build opinionated, turnkey solutions. Where customers prefer to buy over build, we become their trusted partner with solutions that are no-brainers to buy and easy to use. About AWS Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the preferred qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
US, MA, Boston
We're a new research lab based in San Francisco and Boston focused on developing foundational capabilities for useful AI agents. We're pursuing several key research bets that will enable AI agents to perform real-world actions, learn from human feedback, self-course-correct, and infer human goals. We're particularly excited about combining large language models (LLMs) with reinforcement learning (RL) to solve reasoning and planning, learned world models, and generalizing agents to physical environments. We're a small, talent-dense team with the resources and scale of Amazon. Each team has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. AI agents are the next frontier—the right research bets can reinvent what's possible. Join us and help build this lab from the ground up. Key job responsibilities * Define the product vision and roadmap for our agentic developer platform, translating research into products developers love * Partner deeply with research and engineering to identify which capabilities are ready for productization and shape how they're exposed to customers * Own the developer experience end-to-end from API design and SDK ergonomics to documentation, sample apps, and onboarding flows * Understand our customers deeply by engaging directly with developers and end-users, synthesizing feedback, and using data to drive prioritization * Shape how the world builds AI agents by defining new primitives, patterns, and best practices for agentic applications About the team Our team brings the AGI Lab's agent capabilities to customers. We build accessible, usable products: interfaces, frameworks, and solutions, that turn our platform and model capabilities into AI agents developers can use. We own the Nova Act agent playground, Nova Act IDE extension, Nova Act SDK, Nova Act AWS Console, reference architectures, sample applications, and more.
US, WA, Bellevue
This is currently a 12 month temporary contract opportunity with the possibility to extend to 24 months based on business needs. The Artificial General Intelligence (AGI) team is seeking a dedicated, skilled, and innovative Applied Scientist with a robust background in machine learning, statistics, quality assurance, auditing methodologies, and automated evaluation systems to ensure the highest standards of data quality, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As part of the AGI team, an Applied Scientist will collaborate closely with core scientist team developing Amazon Nova models. They will lead the development of comprehensive quality strategies and auditing frameworks that safeguard the integrity of data collection workflows. This includes designing auditing strategies with detailed SOPs, quality metrics, and sampling methodologies that help Nova improve performances on benchmarks. The Applied Scientist will perform expert-level manual audits, conduct meta-audits to evaluate auditor performance, and provide targeted coaching to uplift overall quality capabilities. A critical aspect of this role involves developing and maintaining LLM-as-a-Judge systems, including designing judge architectures, creating evaluation rubrics, and building machine learning models for automated quality assessment. The Applied Scientist will also set up the configuration of data collection workflows and communicate quality feedback to stakeholders. An Applied Scientist will also have a direct impact on enhancing customer experiences through high-quality training and evaluation data that powers state-of-the-art LLM products and services. A day in the life An Applied Scientist with the AGI team will support quality solution design, conduct root cause analysis on data quality issues, research new auditing methodologies, and find innovative ways of optimizing data quality while setting examples for the team on quality assurance best practices and standards. Besides theoretical analysis and quality framework development, an Applied Scientist will also work closely with talented engineers, domain experts, and vendor teams to put quality strategies and automated judging systems into practice.
US, WA, Seattle
Amazon Music is an immersive audio entertainment service that deepens connections between fans, artists, and creators. From personalized music playlists to exclusive podcasts, concert livestreams to artist merch, Amazon Music is innovating at some of the most exciting intersections of music and culture. We offer experiences that serve all listeners with our different tiers of service: Prime members get access to all the music in shuffle mode, and top ad-free podcasts, included with their membership; customers can upgrade to Amazon Music Unlimited for unlimited, on-demand access to 100 million songs, including millions in HD, Ultra HD, and spatial audio; and anyone can listen for free by downloading the Amazon Music app or via Alexa-enabled devices. Join us for the opportunity to influence how Amazon Music engages fans, artists, and creators on a global scale. We are seeking a highly skilled and analytical Research Scientist. You will play an integral part in the measurement and optimization of Amazon Music marketing activities. You will have the opportunity to work with a rich marketing dataset together with the marketing managers. This role will focus on developing and implementing causal models and randomized controlled trials to assess marketing effectiveness and inform strategic decision-making. This role is suitable for candidates with strong background in causal inference, statistical analysis, and data-driven problem-solving, with the ability to translate complex data into actionable insights. As a key member of our team, you will work closely with cross-functional partners to optimize marketing strategies and drive business growth. Key job responsibilities Develop Causal Models Design, build, and validate causal models to evaluate the impact of marketing campaigns and initiatives. Leverage advanced statistical methods to identify and quantify causal relationships. Conduct Randomized Controlled Trials Design and implement randomized controlled trials (RCTs) to rigorously test the effectiveness of marketing strategies. Ensure robust experimental design and proper execution to derive credible insights. Statistical Analysis and Inference Perform complex statistical analyses to interpret data from experiments and observational studies. Use statistical software and programming languages to analyze large datasets and extract meaningful patterns. Data-Driven Decision Making Collaborate with marketing teams to provide data-driven recommendations that enhance campaign performance and ROI. Present findings and insights to stakeholders in a clear and actionable manner. Collaborative Problem Solving Work closely with cross-functional teams, including marketing, product, and engineering, to identify key business questions and develop analytical solutions. Foster a culture of data-informed decision-making across the organization. Stay Current with Industry Trends Keep abreast of the latest developments in data science, causal inference, and marketing analytics. Apply new methodologies and technologies to improve the accuracy and efficiency of marketing measurement. Documentation and Reporting Maintain comprehensive documentation of models, experiments, and analytical processes. Prepare reports and presentations that effectively communicate complex analyses to non-technical audiences.