Customer-obsessed science


Research areas
-
September 2, 2025Audible's ML algorithms connect users directly to relevant titles, reducing the number of purchase steps for millions of daily users.
-
-
Featured news
-
Representation learning is a fundamental aspect of modern artificial intelligence, driving substantial improvements across diverse applications. While self-supervised contrastive learning has led to significant advancements in fields like computer vision and natural language processing, its adaptation to tabular data presents unique challenges. Traditional approaches often prioritize optimizing model architecture
-
2024Various types of learning rate (LR) schedulers are being used for training or fine tuning of Large Language Models today. In practice, several mid-flight changes are required in the LR schedule either manually, or with careful choices around warmup steps, peak LR, type of decay and restarts. To study this further, we consider the effect of switching the learning rate at a predetermined time during training
-
2024Large Language Models (LLMs) have shown impressive capabilities but also a concerning tendency to hallucinate. This paper presents REFCHECKER, a framework that introduces claim-triplets to represent claims in LLM responses, aiming to detect fine-grained hallucinations. In REFCHECKER, an extractor generates claim-triplets from a response, which are then evaluated by a checker against a reference. We delineate
-
ACM SoCC 20242024There has been a growing demand for making modern cloud-based data analytics systems cost-effective and easy to use. AI-powered intelligent resource scaling is one such effort, aiming at automating scaling decisions for serverless offerings like Amazon Redshift Serverless. The foundation of intelligent resource scaling lies in the ability to forecast query workloads and their resource consumption accurately
-
2024Machine unlearning is motivated by desire for data autonomy: a person can request to have their data’s influence removed from deployed models, and those models should be updated as if they were retrained without the person’s data. We show that, counter-intuitively, these updates expose individuals to high-accuracy reconstruction attacks which allow the attacker to recover their data in its entirety, even
Conferences
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all