Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
NeurIPS 20212021In this paper, we study the implicit bias of gradient descent for sparse regression. We extend results on regression with quadratic parametrization, which amounts to depth-2 diagonal linear networks, to more general depth-N networks, under more realistic settings of noise and correlated designs. We show that early stopping is crucial for gradient descent to converge to a sparse model, a phenomenon that
-
NeurIPS 20212021We introduce a new Collaborative Causal Discovery problem, through which we model a common scenario in which we have multiple independent entities each with their own causal graph, and the goal is to simultaneously learn all these causal graphs. We study this problem without the causal sufficiency assumption, using Maximal Ancestral Graphs (MAG) to model the causal graphs, and assuming that we have the
-
KDD 2021 Workshop on Data-Efficient Machine Learning2021Active learning is a commonly used technique to reduce the amount of labeled data necessary for supervised learning. In this paper, we focus on collection of labeled examples in a domain with large unlabeled dataset and extreme class imbalance. This scenario presents several challenges to Active learning. Traditional active learning strategies can face acute difficulty in locating minority class examples
-
NeurIPS 20212021Episodic training is a core ingredient of few-shot learning to train models on tasks with limited labelled data. Despite its success, episodic training remains largely understudied, prompting us to ask the question: what is the best way to sample episodes? In this paper, we first propose a method to approximate episode sampling distributions based on their difficulty. Building on this method, we perform
-
NeurIPS 20212021This article proposes novel rules for false discovery rate control (FDRC) geared towards online anomaly detection in time series. Online FDRC rules allow to control the properties of a sequence of statistical tests. In the context of anomaly detection, the null hypothesis is that an observation is normal and the alternative is that it is anomalous. FDRC rules allow users to target a lower bound on precision
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all