Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
ICLR 20222022Building sample-efficient agents that generalize out-of-distribution (OOD) in real-world settings remains a fundamental unsolved problem on the path towards achieving higher-level cognition. One particularly promising approach is to begin with low-dimensional, pretrained representations of our world, which should facilitate efficient downstream learning and generalization. By training 240 representations
-
SIGIR 20222022In the era of big data, eXtreme Multi-label Classification (XMC) has already become one of the most essential research tasks to deal with enormous label spaces in machine learning applications. Instead of assessing every individual label, most XMC methods rely on label trees or filters to derive short ranked label lists as prediction, thereby reducing computational overhead. Specifically, existing studies
-
ACL 2022 Workshop on Insights from Negative Results in NLP2022Open-world classification in dialog systems require models to detect open intents, while ensuring the quality of in-domain (ID) intent classification. In this work, we revisit methods that leverage distance-based statistics for unsupervised out-of-domain (OOD) detection. We show that despite their superior performance on threshold-independent metrics like AUROC on test-set, threshold values chosen based
-
The Web Conference 20222022A/B tests serve the purpose of reliably identifying the effect of changes introduced in online services. It is common for online platforms to run a large number of simultaneous experiments by splitting incoming user traffic randomly in treatment and control groups. Despite a perfect randomization between different groups, simultaneous experiments can interact with each other and create a negative impact
-
The Web Conference 20222022We tackle the problem of position bias estimation for streaming media services. Position bias is a widely studied topic in ranking literature and its impact on ranking quality is well understood. Although several methods exist to estimate position bias, their applicability to an industrial setting is limited, either because they require ad-hoc interventions that harm user experience, or because their learning
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all