Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
CVPR 20222022We propose TubeR: a simple solution for spatio-temporal video action detection. Different from existing methods that depend on either an off-line actor detector or hand-designed actor-positional hypotheses like proposals or anchors, we propose to directly detect an action tubelet in a video by simultaneously performing action localization and recognition from a single representation. TubeR learns a set
-
NAACL 20222022Recent work has found that multi-task training with a large number of diverse tasks can uniformly improve downstream performance on unseen target tasks. In contrast, literature on task transferability has established that the choice of intermediate tasks can heavily affect downstream task performance. In this work, we aim to disentangle the effect of scale and relatedness of tasks in multi-task representation
-
Transactions on Machine Learning Research2022We present a two-step hybrid reinforcement learning (RL) policy that is designed to generate interpretable and robust hierarchical policies on the RL problem with graph-based input. Unlike prior deep reinforcement learning policies parameterized by an end-to-end black-box graph neural network, our approach disentangles the decision-making process into two steps. The first step is a simplified classification
-
AAAI 2022 Workshop on Privacy-Preserving Artificial Intelligence2022We introduce a novel privacy-preserving methodology for performing Visual Question Answering on the edge. Our method constructs a symbolic representation of the visual scene, using a low-complexity computer vision model that jointly predicts classes, attributes and predicates. This symbolic representation is non-differentiable, which means it cannot be used to recover the original image, thereby keeping
-
NAACL 20222022Learning high-quality dialogue representations is essential for solving a variety of dialogue-oriented tasks, especially considering that dialogue systems often suffer from data scarcity. In this paper, we introduce Dialogue Sentence Embedding (DSE), a self-supervised contrastive learning method that learns effective dialogue representations suitable for a wide range of dialogue tasks. DSE learns from dialogues
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all