Linghui Luo is seen standing outside in front of a rock formation, with a small waterfall in the background
Linghui Luo, an AWS applied scientist based in Berlin, is conducting research into quicker, easier methods for ensuring code is stable and secure.

From internship project to published research and a role at Amazon

How Linghui Luo's research helps ensure code is checked and ready to deploy.

Building quality software tends to follow a familiar routine for most developers. You write code on your computer within an integrated development environment (IDE), and then, to check for any security flaws, you upload it to a central repository and run a security scan. The results appear on a dashboard in your web browser, separate from the IDE.

Linghui Luo was asked to rethink this workflow during a five-month internship at Amazon Web Services (AWS) in 2020. In doing so, she came up with a prototype for a novel way to run security scans on code. The prototype became the basis for a 2021 research paper and evolved into the newly launched Amazon CodeGuru Security plugin for two IDEs, Amazon SageMaker Studio and Jupyter notebooks.

See Amazon's Berlin research office
The customer-obsessed science produced by teams in Berlin is integrated in several Amazon products and services, including retail, Alexa, robotics, and more.

Luo joined Amazon full-time in early 2022 as an AWS applied scientist, shortly after earning her PhD in computer science at the Heinz Nixdorf Institute at Paderborn University in Germany. Now based in Berlin, she has continued her research into quicker, easier methods for ensuring code is stable and secure. The first line of her GitHub biography page says it best: “The usage of security analysis tools should become an industrial convention in secure software development. However, we need to create usable analysis tools first.”

Streamlining security scans

Luo's work makes it easier for developers to use Amazon CodeGuru Security, a tool that can identify critical issues, security vulnerabilities, and hard-to-find bugs. CodeGuru Security is a static analysis tool, which means it evaluates each line of code without running it, offering an opportunity to head off problems as work progresses.

But she doesn't just focus on the software — she also studies the developers who use it. The results affirm a key Amazon practice: working backwards from the customer.

CodeGuru Security operates in the cloud, which is ideal for static analysis tools — particularly ones that perform the kind of deep analysis that security testing requires. In the cloud, users can track and store issues in a central location, and each scan runs more efficiently than it would on a single machine.

Related content
Based on a survey of thousands of machine learning practitioners, a new CodeGuru extension addresses common problems, such as code cell execution order, incorrect API calls, and security.

When developers use popular continuous integration workflows, they receive security recommendations every time they push code. The recommendations appear in the developer’s web browser.

What if developers could have a direct line to CodeGuru Security, running static analysis in the cloud from within the IDE? This was the challenge AWS applied scientist Martin Schäf presented to Luo for her internship.

"At the beginning, most people would think this is a software engineering problem, but it's actually not," Luo said. "What we took was basically a user-centric approach."

Starting with the user

Luo first interviewed AWS developers to determine what they expected from an IDE-based static analysis tool. When should the analysis happen? How automated should it be? How long did they think it should take?

The problem may not be as straightforward as it sounds. While some tools already do static analysis from within an IDE, it is typically "lightweight" scanning that catches glaring problems and takes maybe 10 seconds at most to complete. Static application security testing, on the other hand, looks more intensively at the code. That takes several minutes, even with cloud resources — in the past, such testing was much slower, taking hours. A successful integration would need to manage user expectations on timing, among other aspects.

Related content
Prioritizing predictability over efficiency, adapting data partitioning to traffic, and continuous verification are a few of the principles that help ensure stability, availability, and efficiency.

Based on her interviews with developers, Luo developed a prototype CodeGuru Security extension for Visual Studio, a popular IDE. Then she ran usability tests to see whether what she built matched developers' needs.

The project, Luo said, expanded her horizons in understanding how to build more useful tools for developers. Actions that may have seemed trivial to her, like needing to take code out of the IDE and upload it somewhere else for analysis, proved to be pain points for developers who wanted a static analysis integration to be as seamless as possible.

"As a PhD student who has always been at university, I had some assumptions about what developers would like to have," Luo said. "But after talking to them, I found out that what they want is totally different." The experience reinforced to her the importance of talking to users before you develop a tool.

Validating code from notebooks

The new CodeGuru plugin for Jupyter and SageMaker Studio is meant to help users prevent bugs from sneaking into code developed in notebooks. Data scientists like notebooks because they can append text and relevant images to lines of code.

But the platform can lend itself to reproducibility issues. Let's say you have four lines of code, each in a different code cell within a notebook. A user can run the code cells in arbitrary order; but when the code is shared, another user might run them in a different sequence. That’s an issue, because running code cells in a different order might produce different results. Luo offers the example in a recent paper about the issue co-authored with Amazon colleagues Schäf, Ben Liblit, Alejandro Molina Ramirez, Rajdeep Mukherjee, Goran Piskachev, Omer Tripp, and Willem Visser; along with Zachary Patterson of the University of Texas at Dallas.

Left: code cells executed in nonlinear order; right: code cells executed in linear order.
Left: code cells executed in nonlinear order; right: code cells executed in linear order.

Notebooks are great for data exploration and presentation, Luo explained, but too often, the code gets passed on and deployed without being checked. "If you cannot reproduce the result, how can you ensure that your code is running correctly?" Luo said. The CodeGuru plugin can flag such potential flaws and suggest improvements.

Of course, a security recommendation is only truly useful if the developer actually deploys it. Ongoing research on Luo's team explores how to gauge the quality of static analysis rules by measuring certain developer actions.

Visible impact

Luo developed an interest in computers as a high school student in China. It was a "natural choice," she said, to go right into computer science for college. Her interest in computer security emerged from a personal experience while she was a master's student. She noticed that an app she was using allowed a user to change the cell phone number attached to an account without any verification. The app was connected to her bank, and she was appalled at how insecure it was. That realization led to her focus on software security during her doctoral program.

My team at Amazon is a good platform for me to be able to put science into production and have a visible impact in a short time.
Linghui Luo

Luo's initiative during her Amazon internship — and the openness of her team — made it possible to make the most of her time there. By the time her internship was done, she already had an offer to join the team full-time. Schäf, Luo’s hiring manager, noted that Luo owned the science work on the SageMaker plugin from start to finish.

“At Amazon, we are customer obsessed, which is why it is so important to have scientists like her that follow a good scientific process to help our engineers understand which solutions bring the best value to our customer,” he said. “She quickly turns ideas into prototypes that allow us to verify what benefits our customers and what doesn’t.”

Luo had considered staying in academia after earning her doctoral degree, and at one point she also received an offer to join a research institution in Germany as tenure-track faculty. But ultimately, she decided Amazon was the place for her.

"It was a really hard decision," she said. "But I always wanted to do more applicable science. My team at Amazon is a good platform for me to be able to put science into production and have a visible impact in a short time."

Related content

US, MA, North Reading
We are looking for experienced scientists and engineers to explore new ideas, invent new approaches, and develop new solutions in the areas of Controls, Dynamic modeling and System identification. Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Key job responsibilities Applied Scientists take on big unanswered questions and guide development team to state-of-the-art solutions. We want to hear from you if you have deep industry experience in the Mechatronics domain and : * the ability to think big and conceive of new ideas and novel solutions; * the insight to correctly identify those worth exploring; * the hands-on skills to quickly develop proofs-of-concept; * the rigor to conduct careful experimental evaluations; * the discipline to fast-fail when data refutes theory; * and the fortitude to continue exploring until your solution is found We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Westborough, MA, USA
GB, London
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python or R is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: London, GBR
IN, KA, Bengaluru
Job Description ATE (Analytics, Technology and Engineering) is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in operations for the benefit of our customers. Our team is responsible for creating core analytics, science capabilities, platforms development and data engineering. We develop scalable analytics applications and research modeling to optimize operation processes.. You will work with professional software development managers, data engineers, data scientists, applied scientists, business intelligence engineers and product managers using rigorous quantitative approaches to ensure high quality data tech products for our customers around the world, including India, Australia, Brazil, Mexico, Singapore and Middle East. We are on the lookout for an enthusiastic and highly analytical individual to be a part of our journey. Amazon is growing rapidly and because we are driven by faster delivery to customers, a more efficient supply chain network, and lower cost of operations, our main focus is in the development of strategic models and automation tools fed by our massive amounts of available data. You will be responsible for building these models/tools that improve the economics of Amazon’s worldwide fulfillment networks in emerging countries as Amazon increases the speed and decreases the cost to deliver products to customers. You will identify and evaluate opportunities to reduce variable costs by improving fulfillment center processes, transportation operations and scheduling, and the execution to operational plans. You will also improve the efficiency of capital investment by helping the fulfillment centers to improve storage utilization and the effective use of automation. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools. Major responsibilities include: · In this role, you will be responsible for developing and implementing innovative, scalable models and tools aimed at tackling novel challenges within Amazon’s global fulfillment network. Collaborating with fellow scientists from various teams, you will work on integrated solutions to enhance fulfillment speed, reduce costs. Your in-depth comprehension of business challenges will enable you to provide scientific analyses that underpin critical business decisions, utilizing a diverse range of methodologies. You’ll have the opportunity to design scientific tool platforms, deploy models, create efficient data pipelines, and streamline existing processes. Join us in shaping the future of Amazon’s global retail business by optimizing delivery speed at scale and making a lasting impact on the world of e-commerce. If you’re passionate about solving complex problems and driving innovation, we encourage you to apply. About the team This team is responsible for applying science based algo and techniques to solve the problems in operation and supply chain. Some of these problems include, volume forecasting, capacity planning, fraud detection, scenario simulation and using LLM/GenAI for process efficiency We are open to hiring candidates to work out of one of the following locations: Bengaluru, KA, IND
IL, Tel Aviv
Are you passionate about pushing the boundaries of computer vision, generative AI, deep learning, and machine learning? Ready to tackle challenges in document understanding at scale? We’re looking for innovative minds to join our world-class team at AWS, where you’ll collaborate with leading researchers, academics, and engineers on Amazon Textract. Why AWS? Be part of the leading cloud service provider powering innovation and positive impact. Work on real-world problems alongside tech and business giants. Access to unlimited data and computational resources. Collaborate with world-class researchers and developers. Deploy solutions at AWS scale and publish your work at top conferences. Focus Areas: - LLMs, document understanding, scene text recognition. - Visual question answering, NLP+vision, layout understanding. Locations: Tel Aviv and Haifa Think you’re a fit? Dive into the world of AWS Computer Vision and help us innovate at the forefront of technology. Key job responsibilities - Design cutting-edge neural network architectures. - Create document understanding solutions for complex scenarios and large visual datasets. - Set benchmarks and success criteria for model performance. - Collaborate across AWS and Amazon to bring scientific breakthroughs to our customers. - Add your unique creativity to our multidisciplinary team. - Mentor junior scientists and interns/PhD students. We are open to hiring candidates to work out of one of the following locations: Haifa, ISR | Tel Aviv, ISR
LU, Luxembourg
Have you ever wished to build high standard Operations Research and Machine Learning algorithms to optimize one of the most complex logistics network? Have you ever ordered a product on Amazon websites and wondered how it got delivered to you so fast, and what kinds of algorithms & processes are running behind the scenes to power the whole operation? If so, this role is for you. The team: Global transportation services, Research and applied science - Operations is at the heart of the Amazon customer experience. Each action we undertake is on behalf of our customers, as surpassing their expectations is our passion. We improve customer experience through continuously optimizing the complex movements of goods from vendors to customers throughout Europe. - Global transportation analytical teams are transversal centers of expertise, composed of engineers, analysts, scientists, technical program managers and developers. We are focused on Amazon most complex problems, processes and decisions. We work with fulfillment centers, transportation, software developers, finance and retail teams across the world, to improve our logistic infrastructure and algorithms. - GTS RAS is one of those Global transportation scientific team. We are obsessed by delivering state of the art OR and ML tools to support the rethinking of our advanced end-to-end supply chain. Our overall mission is simple: we want to implement the best logistics network, so Amazon can be the place where our customers can be delivered the next-day. The role: Applied scientist, speed and long term network design The person in this role will have end-to-end ownership on augmenting RAS Operation Research and Machine Learning modeling tools. They will help understand where are the constraints in our transportation network, and how we can remove them to make faster deliveries at a lower cost. You will be responsible for designing and implementing state-of-the-art algorithmic in transportation planning and network design, to expand the scope of our Operations Research and Machine Learning tools, to reflect the constantly evolving constraints in our network. You will enable the creation of a product that drives ever-greater automation, scalability and optimization of every aspect of transportation, planning the best network and modeling the constraints that prevent us from offering more speed to our customer, to maximize the utilization of the associated resources. The impact of your work will be in the Amazon EU global network. The product you will build will span across multiple organizations that play a role in Amazon’s operations and transportation and the shopping experience we deliver to customer. Those stakeholders include fulfilment operations and transportation teams; scientists and developers, and product managers. You will understand those teams constraints, to include them in your product; you will discuss with technical teams across the organization to understand the existing tools and assess the opportunity to integrate them in your product.You will engage with fellow scientists across the globe, to discuss the solutions they have implemented and share your peculiar expertise with them. This is a critical role and will require an aptitude for independent initiative and the ability to drive innovation in transportation planning and network design. Successful candidates should be able to design and implement high quality algorithm solutions, using state-of-the art Operations Research and Machine Learning techniques. Key job responsibilities - Engage with stakeholders to understand what prevents them to build a better transportation network for Amazon - Review literature to identify similar problems, or new solving techniques - Build the mathematical model representing your problem - Implement light version of the model, to gather early feed-back from your stakeholders and fellow scientists - Implement the final product, leveraging the highest development standards - Share your work in internal and external conferences - Train on the newest techniques available in your field, to ensure the team stays at the highest bar About the team GTS Research and Applied Science is a team of scientists and engineers whom mission is to build the best decision support tools for strategic decisions. We model and optimize Amazon end-to-end operations. The team is composed of enthusiastic members, that love to discuss any scientific problem, foster new ideas and think out of the box. We are eager to support each others and share our unique knowledge to our colleagues. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, CA, Santa Clara
Amazon AI is looking for world class scientists and engineers to join its AWS AI Labs. This group is entrusted with developing core data mining, natural language processing, deep learning, and machine learning algorithms for AWS. You will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and explore conceptually new solutions. You will interact closely with our customers and with the academic community. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA | Santa Clara, CA, USA | Seattle, WA, USA
DE, BE, Berlin
Are you excited about developing state-of-the-art computer vision models that revolutionize Amazon’s Fulfillment network? Are you looking for opportunities to apply AI on real-world problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics, we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience — at Amazon scale. To this end, we are looking for an Applied Scientist who will build and deploy models that make smarter decisions on a wide array of multi-modal signals. Together, we will be pushing beyond the state of the art in optimizing one of the most complex systems in the world: Amazon's Fulfillment Network. Key job responsibilities In this role, you will build computer vision and multi-modal deep learning models that understand the state of products and packages flowing through Amazon’s fulfillment network. You will build models that solve challenging problems like product identification and damage detection on Amazon's entire retail catalog (billions of different items, thousands of new items every day). You will primarily work with very large real-world vision datasets, as well as a diverse set of multi-modal datasets, including natural language and structured data. You will face a high level of research ambiguity and problems that require creative, ambitious, and inventive solutions. A day in the life AFT AI delivers the AI solutions that empower Amazon’s fulfillment network to make smarter decisions. You will work on an interdisciplinary team of scientists and engineers with deep expertise in developing cutting-edge AI solutions at scale. You will work with images, videos, natural language, and sequences of events from existing or new hardware. You will adapt state-of-the-art machine learning and computer vision techniques to develop solutions for business problems in the Amazon Fulfillment Network. About the team Amazon Fulfillment Technologies (AFT) powers Amazon’s global fulfillment network. We invent and deliver software, hardware, and science solutions that orchestrate processes, robots, machines, and people. We harmonize the physical and virtual world so Amazon customers can get what they want, when they want it. AFT AI is spread across multiple locations in NA (Bellevue WA and Nashville, TN) and Europe (Berlin, Germany). We are hiring candidates to work out of the Berlin location. Publicly available articles showcasing some of our work: - Damage Detection: https://www.amazon.science/latest-news/the-surprisingly-subtle-challenge-of-automating-damage-detection - Product ID: https://www.amazon.science/latest-news/how-amazon-robotics-is-working-on-new-ways-to-eliminate-the-need-for-barcodes We are open to hiring candidates to work out of one of the following locations: Berlin, BE, DEU
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and underserved communities around the world. We are searching for talented candidates with experience in spaceflight trajectory modeling and simulation, orbit mechanics, and launch vehicle mission planning. Key job responsibilities This position requires experience in simulation and analysis of astrodynamics models and spaceflight trajectories. Strong analysis skills are required to develop engineering studies of complex large-scale dynamical systems. This position requires demonstrated expertise in computational analysis automation and tool development. Working with the Kuiper engineering team, you will: - Develop modeling techniques for analysis and simulation of deployment dynamics of multiple satellites - Support Project Kuiper’s Launch Vehicle Mission Management team with technical expertise in Launch Vehicle trajectory requirements specification - Develop tools to support Mission Management planning for over 80 launches! - Work collaboratively with launch vehicle system technical teams Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are open to hiring candidates to work out of one of the following locations: Redmond, WA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. As a Applied Scientist at the intersection of machine learning and the life sciences, you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the cutting edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA