“Talking to the public about AI”

The University of Oxford’s Michael Wooldridge and Amazon’s Zachary Lipton on the topic of Wooldridge’s AAAI keynote — and the road ahead for AI research.

This morning, at the annual meeting of the Association for the Advancement of Artificial Intelligence (AAAI), Michael Wooldridge, a professor of computer science at the University of Oxford and a program director at the Alan Turing Institute, gave a talk entitled “Talking to the Public about AI”. It’s a subject that Wooldridge knows a lot about, having appeared frequently on TV and radio, testified before the House of Lords, and written three popular-science books (in addition to coauthoring seven technical books). His most recent bookA Brief History of Artificial Intelligence: What It Is, Where We Are, and Where We Are Going, was published on January 19.

Mike Wooldridge portrait.png
Michael Wooldridge, a professor of computer science at the University of Oxford and a program director at the Alan Turing Institute.

Talking to the public about AI is also a passion of Zachary Lipton, an Amazon Web Services scientist and the BP Junior Chair Assistant Professor of Operations Research and Machine Learning at Carnegie Mellon University. In 2016, Lipton created the Approximately Correct blog as a forum for examining both social and technical questions surrounding AI, and in 2018, he delivered a talk at MIT Technology Review’s Emerging Technologies conference titled “Machine Learning: The Opportunities and the Opportunists”.

As AAAI 2021 approached, Lipton and Wooldridge joined Amazon Science to share their perspectives on the topic of public communication around AI.

Amazon Science: What are the difficulties in talking about AI? 

Mike Wooldridge: The reality of AI is a long, long, long way away from how it’s often portrayed. The portrayal often divides neatly into either dystopia or utopia. I think there's tons to be excited about; this is clearly the most exciting time that I've seen, and I've been in the game since the 1980s. There are also things that we should be worried about. One of the reasons that I decided to write A Brief History of Artificial Intelligence was to try to reframe the narrative a little bit.

Zachary Lipton.jpeg
Zachary Lipton, an AWS scientist and the BP Junior Chair Assistant Professor of Operations Research and Machine Learning at Carnegie Mellon University.

Zack Lipton: There's a distinction between the nature of the technology and the capabilities of technology, and I think there's a lot of confusion about both of them. 

Neural-network algorithms, together with very large data sets and parallel computation, are really good at something called function fitting — learning to make predictions or to infer statistical relationships. And it turns out that there are a lot of tasks, even ones that might not be so intuitive, that you can frame as prediction problems. For example, machine translation: given some representation of a sentence in English, you could try to predict what's most likely to be the first word of the corresponding translation in French; then, given the input sentence and the first word, try to predict the second word; and so forth. 

But if you have what we thought was a human capacity for doing translation, people start making leaps to all sorts of other things that humans do that are not necessarily as easily cast as prediction problems. A very natural one is making decisions. So people start saying, Well, machine learning is going to completely change medicine. But it turns out that decision making involves all kinds of considerations that aren't just straight-up prediction problems. You need to learn something about causal effects. And this is an area where we're trailing far behind where we are in prediction. 

A Brief History of Artificial Intelligence, the newest book from Michael Wooldridge.

AS: Mike, what is the reframing you're attempting in the book? 

MW: Where the book came from is, in 2014, I was sat at my desk in my office in Oxford, and the phone rang, and it was a news station looking for an expert on AI, because Stephen Hawking says AI might be the end of humanity. And I declined the interview, because I just assumed there was somebody smarter and more eloquent out there who was going to answer the call. But I started to see these stories appearing, and they were in a vacuum. There was no response.

So I finally decided I wanted to be one of the people who responded. Reframing the narrative is trying to say, Look, AI isn't necessarily what you think it is. The stuff that is so exciting from the movies and books is kind of on the fringes. The stuff that you lose sleep about is not necessarily what you should be losing sleep about.

But that doesn't mean there isn't anything you should be worried about. The famous one, which is going to be with us for a while, is bias. I think the AI community and machine learning community are genuinely working very hard to try to understand how bias arises and how to mitigate the risks of those biases. 

ZL: I think, arguably, as much as the interest has ballooned, it topped out around 2018 and has been somewhat level since then. At the same time, I think there's also a lot more supply. It's not like there's only 300 people out there really working in deep learning. I think if you were active in the space in 2013, 2014, you probably started getting a lot of attention, where someone with a comparable level of experience and accomplishment in 2020 might have considerably less focus on them.

There is something interesting that the things we're excited about in 2020 and 2021 are not really qualitatively different than in 2015, 2016, 2017, right? I think it is a telling sign that the things that we're excited about are more or less the stuff we already got to work in 2016, just trained on bigger datasets. 

I started to see these stories appearing, and they were in a vacuum. There was no response. So I finally decided I wanted to be one of the people who responded.
Mike Wooldridge

MW: Neural-net research really hit tough times by the mid-’90s. But the story there is, it just hit the limits of what computers could do. So there is a theory that the progress that we've seen will plateau for exactly that reason: it will just hit the limits. Not of the science, but just of the technology. And without fundamental new ideas to drive it forward — and it would require some quite big ideas in terms of training — we might just well hit the plateau in the next few years.

AS: If we are on a plateau, what do you see on the horizon? 

ZL: I’ll give an analogy: Arguably, before AI was a big commercial interest, databases were, and after databases, an early kind of data mining. But databases never stopped being important. Maybe they weren't generating as revolutionary developments as in the past, but that doesn't mean we stop using them. They just stopped being where the action was.

I don't think neural networks are going away. I don't think we have a rival technology that is vying to replace neural networks as the best way for estimating things like functions that assign categories to images or make complicated predictions based on language data.

What I do see happening is it just not being where the action is. And I think this is already starting to happen. So I could say where I think I think the action is. 

Almost all machine learning, including deep learning, proceeds under this idea that you have some fixed, static world that's throwing off data, and you're collecting the data and trying to find a function that does something useful. And that's just not the world that we live in. In the world that we live in, data is constantly coming in. It's coming from a variety of sources. It's becoming obsolete. The world is changing in various ways, and how to function in the world — even just making predictions — is actually a whole different kind of concern that requires that we think about this outer loop and what's going on in the environment.

Almost all machine learning ... proceeds under this idea that you have some fixed, static world that's throwing off data .... And that's just not the world that we live in.
Zack Lipton

In my work at CMU with my lab, this is where we have been driving a lot of our attention: to consider whether it's just a passively changing world or actually a world that's responding. For example, if you have a policy for making decisions, people will be strategic, and they'll start behaving differently. How you build technology that is suitable for a changing world and accounts for the fact that you are part of a dynamic environment, to me, that's where the action is already moving. 

MW: I think we're overlapping in our answers in at least one respect, which is, what I'm disappointed about is not having enough AI in the physical world, the world that we all inhabit. And there's a number of reasons for that. For example, reinforcement learning is one of the technologies that underpins the breakthrough Atari-playing programs. The thing is just playing endless games against itself. When you're playing against space invaders, it doesn't matter if you make a mistake.

In the real world, it matters. So you can't do driverless-car technology, for example, with reinforcement learning. The natural answer to that is, well, you need high-fidelity simulators. That's what everybody's doing, naturally enough, but it will only take you so far. I want to see programs that could really learn how to do things in the physical world. That for me would be exciting. 

The other thing — and again, it’s overlapping with what you said — is we know from experience with adversarial examples how brittle this technology is. We can only trust the technology so far until we understand where that brittleness lies and what the limits of it are. Understanding that is going to be quite crucial. If we don't get to that, then we're always going to be nervous about this technology whenever it's used outside scenarios like game playing. So those are the two things that I'm really excited about. At least this afternoon.

Research areas

Related content

RO, Iasi
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
EE, Tallinn
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.
IL, Tel Aviv
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, South Africa, Spain, Sweden, UAE, and UK). Please note these are not remote internships.
GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Seattle
Passionate about books? The Amazon Books personalization team is looking for a talented Applied Scientist II to help develop and implement innovative science solutions to make it easier for millions of customers to find the next book they will love. In this role you will: - Collaborate within a dynamic team of scientists, economists, engineers, analysts, and business partners. - Utilize Amazon's large-scale computing and data resources to analyze customer behavior and product relationships. - Contribute to building and maintaining recommendation models, and assist in running A/B tests on the retail website. - Help develop and implement solutions to improve Amazon's recommendation systems. Key job responsibilities The role involves working with recommender systems that combine Natural Language Processing (NLP), Reinforcement Learning (RL), graph networks, and deep learning to help customers discover their next great read. You will assist in developing recommendation model pipelines, analyze deep learning-based recommendation models, and collaborate with engineering and product teams to improve customer-facing recommendations. As part of the team, you will learn and contribute across these technical areas while developing your skills in the recommendation systems space. A day in the life In your day-to-day role, you will contribute to the development and maintenance of recommendation models, support the implementation of A/B test experiments, and work alongside engineers, product teams, and other scientists to help deploy machine learning solutions to production. You will gain hands-on experience with our recommendation systems while working under the guidance of senior scientists. About the team We are Books Personalization a collaborative group of 5-7 scientists, 2 product leaders, and 2 engineering teams that aims to help find the right next read for customers through high quality personalized book recommendation experiences. Books Personalization is a part of the Books Content Demand organization, which focuses on surfacing the best books for customers wherever they are in their current book journey.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques
CA, ON, Toronto
Are you a passionate scientist in the computer vision area who is aspired to apply your skills to bring value to millions of customers? Here at Ring, we have a unique opportunity to innovate and see how the results of our work improve the lives of millions of people and make neighborhoods safer. As a Principal Applied Scientist, you will work with talented peers pushing the frontier of computer vision and machine learning technology to deliver the best experience for our neighbors. This is a great opportunity for you to innovate in this space by developing highly optimized algorithms that will work at scale. This position requires experience with developing Computer Vision, Multi-modal LLMs and/or Vision Language Models. You will collaborate with different Amazon teams to make informed decisions on the best practices in machine learning to build highly-optimized integrated hardware and software platforms. Key job responsibilities - You will be responsible for defining key research directions in Multimodal LLMs and Computer Vision, adopting or inventing new techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. - You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. - You will also participate in organizational planning, hiring, mentorship and leadership development. - You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).
DE, BE, Berlin
Are you interested in enhancing Alexa user experiences through Large Language Models? The Alexa AI Berlin team is looking for an Applied Scientist to join our innovative team working on Large Language Models (LLMs), Natural Language Processing, and Machine/Deep Learning. You will be at the center of Alexa's LLM transformation, collaborating with a diverse team of applied and research scientists to enhance existing features and explore new possibilities with LLMs. In this role, you'll work cross-functionally with science, product, and engineering leaders to shape the future of Alexa. Key job responsibilities As an Applied Scientist in Alexa Science team: - You will develop core LLM technologies including supervised fine tuning and prompt optimization to enable innovative Alexa use cases - You will research and design novel metrics and evaluation methods to measure and improve AI performance - You will create automated, multi-step processes using AI agents and LLMs to solve complex problems - You will communicate effectively with leadership and collaborate with colleagues from science, engineering, and business backgrounds - You will participate in on-call rotations to support our systems and ensure continuous service availability A day in the life As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team You would be part of the Alexa Science Team where you would be collaborating with Fellow Applied and research scientists!
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and under-served communities around the world. We are looking for an accomplished Applied Scientist who will deliver science applications such as anomaly detection, advanced calibration methods, space engineering simulations, and performance analytics -- to name a few. Key job responsibilities • Translate ambiguous problems into well defined mathematical problems • Prototype, test, and implement state-of-the-art algorithms for antenna pointing calibration, anomaly detection, predictive failure models, and ground terminal performance evaluation • Provide actionable recommendations for system design/definition by defining, running, and summarizing physically-accurate simulations of ground terminal functionality • Collaborate closely with engineers to deploy performant, scalable, and maintainable applications in the cloud Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. A day in the life In this role as an Applied Scientist, you will design, implement, optimize, and operate systems critical to the uptime and performance of Kuiper ground terminals. Your contributions will have a direct impact on customers around the world. About the team This role will be part of the Ground Software & Analytics team, part of Ground Systems Engineering. Our team is responsible for: • Design, development, deployment, and support of a Tier-1 Monitoring and Remediation System (MARS) needed to maintain high availability of hundreds of ground terminals deployed around the world • Ground systems integration/test (I&T) automation • Ground terminal configuration, provisioning, and acceptance automation • Systems analysis • Algorithm development (pointing/tracking/calibration/monitoring) • Software interface definition for supplier-provided hardware and development of software test automation