iNaturalist opens up a wealth of nature data — and computer vision challenges

Amazon Machine Learning Research Award recipient utilizes a combination of people and machine learning models to illuminate the planet's incredible biodiversity.

On a hike in the woods, you spot a colorful little bird. You're pretty sure it's a finch — but what kind? The iNaturalist app was made for this kind of scenario: people all over the world use it to record and identify what they're seeing outside. Increasingly, artificial intelligence enabled by Amazon Web Services (AWS) is playing a role in classifying those observations.

iNaturalist launched about 10 years ago, evolving from a master's project from three students at the University of California, Berkeley. Since then, the app has attracted a community of 1.5 million scientists and nature lovers who post photos of everything from bumblebees to bears.

iNaturalist, which today is a joint initiative of the California Academy of Sciences and the National Geographic Society, once relied solely on its members to identify species.  Now computers are helping out.

"iNaturalist's goal is really just to connect people with nature," said Grant Van Horn, a research engineer at the Cornell Lab of Ornithology. Being able to name that flower or insect you see "really ups the engagement level and makes for a completely different experience,” he adds.

A unique computer vision challenge

Grant Van Horn, research engineer at the Cornell Lab of Ornithology
Grant Van Horn
Oisin Mac Aodha, assistant professor of machine learning at the University of Edinburgh
Oisin Mac Aodha

Van Horn and Oisin Mac Aodha, now an assistant professor of machine learning at the University of Edinburgh, began working with iNaturalist five years ago to solve challenges related to the app's data. Both were at the California Institute of Technology; Van Horn was working on his PhD, and Mac Aodha was a postdoctoral researcher. They were interested in how computer vision could help accelerate and validate the identifications that humans were making on the app.

The appeal of iNaturalist to the researchers is that it represented a unique challenge to the computer vision community, Van Horn says.

If you were to build a computer model to identify finches, for example, you might scrape some images from the internet and use those to train it.

But that dataset, likely full of high-quality photos with serenely perched birds, would look quite different from the vast diversity of mostly amateur photos on iNaturalist. There, a hiker may have just barely managed to capture a photo as a bird is flying away, or the bird might be hard to identify against the background.

That all assumes the bird is even standing still. Swallows and swifts, Van Horn noted, are rarely perching — a good birder will recognize them in flight, but how do you train a computer to do the same thing?

This is just one in a seemingly endless list of computer vision challenges related to nature.

Many species look strikingly similar. They have more than one name: The scientific one (Danaus plexippus, for example) and the common one (monarch butterfly). They can have more than one form: females of one species might look different from their male counterparts; eggs turn into larva, which turn into mature insects.

inat_fg.png
An image provided by the researchers illustrates the difficulty involved in identifying species from images taken in the wild.
Courtesy of Grant Van Horn and Oisin Mac Aodha

These challenges exist across millions of plant and animal species in the world. Taken from that perspective, the more than 300,000 species catalogued on the AWS-hosted iNaturalist are a fraction of what might be possible as users continue to add data.

"You could imagine a future system that can reason about all these things at, effectively, an unprecedented level of ability," Mac Aodha said, "because there's no person that's going to be able to tell you which of X million different things this one picture could be."

New machine learning competitions

In 2017, Van Horn and Mac Aodha began hosting competitions with iNaturalist data at the annual Conference on Computer Vision and Pattern Recognition (CVPR). Part of the conference's Workshop on Fine-Grained Visual Categorization, the competitions present a dataset and then rank entries on their accuracy in classifying it. The winning team is the one that generates the lowest error rate.

In the beginning, just the basic taxonomy of iNaturalist's data posed a learning curve for Van Horn and Mac Aodha. "This was not obvious to us: there's no one taxonomic authority in the world," Van Horn said.

They spent considerable time early on learning to work with the taxonomy, clean up the data, and assemble a dataset comprising 859,000 images for the first competition. In the second year, they featured a dataset with more of a long-tailed distribution, meaning there were many species that had relatively few associated images. In 2019, the dataset was reduced to 268,243 images of highly similar categories captured in a wide variety of situations.

inaturalist dataset image.jpg
After a break last year, the main iNat competition is back and bigger, with a training dataset of 2.7 million images representing 10,000 species. The image above is from an earlier iNat competition dataset.
Courtesy of Grant Van Horn and Mac Aodha Oisin

After a break last year, the main iNat competition is back and bigger, with a training dataset of 2.7 million images representing 10,000 species. The iNat Challenge 2021, which began March 8, ends on May 28.

"It's not like we're trying to throw in categories just to make this thing sound big," Van Horn said. "It is big. And it will just continue to get bigger as the years progress."

This year's larger dataset could encourage teams to explore a recent trend in the machine learning field toward unsupervised learning, where a computer model can learn from the data without labels, or predefined "answers," by seeking patterns within the information.

"We have quite a lot of images for each of these 10,000 categories," Mac Aodha said. "We're hoping that this will open up some interesting avenues for people who are exploring the self-supervised question in the context of this naturalistic, real-world task."

Each competition entry must provide one predicted classification for every image in the dataset. An error rate of 5% on this year’s dataset would be “amazing,” Van Horn said, adding that one team had already achieved an 8.67% error rate by late March.

A move to Open Data

The ability to classify large groups of images opens up the potential to answer a wide range of scientific questions about habitat, behavior, and variations within a species. For example, iNaturalist users have documented alligator lizards' jaw-clinching mating rituals in Los Angeles, where the amount of private property makes traditional wildlife studies impossible.

With this type of insight in mind, Mac Aodha and Van Horn have created a new dataset of natural world tasks (NeWT) that moves beyond the question of species classification and explores concepts related to behavior and attributes that are also exhibited in these photographs.

This work is appearing in the CVPR conference this year, and a competition is being planned to challenge competitors to produce models that generalize to these alternative questions.

So far, winning entries in the CVPR competitions haven’t been deployed by iNaturalist itself, because there are performance tradeoffs between code that generates the least errors, and code that is efficient enough to run on smartphones. But the competition datasets, Mac Aodha said, have found widespread use in the computer vision and machine learning literature, generating some 300 citations over the last few years.

FGVC7: Intro to the 7th Workshop on Fine-Grained Visual Categorization at CVPR 2020

The competitions are hosted on Kaggle, a machine learning and data science platform that draws a wide variety of entrants beyond the iNaturalist community. The 2019 competition drew 213 teams from around the world, and the winners were based in China.

In order for the competition to be fair, an entrant must be able to access and work with the thousands or millions of images in a dataset, no matter where they are in the world. The competitions, and now the iNaturalist app itself, are part of Open Data on AWS, which "makes accessing the data insanely easy and very convenient," Van Horn said.

In 2020, iNaturalist received an Amazon Machine Learning Research Award, which provides unrestricted cash funds and AWS promotional credits to academics to advance the frontiers of machine learning. That helped cover costs for iNaturalist to continue storing data on AWS as it implemented machine learning classification. In March, the app moved to the Registry of Open Data on AWS, which ensures iNaturalist's vast collection of observations — some 60 million — will remain freely accessible to anyone who wants access.

"iNaturalist is doing really important work to bring scientists and everyday citizens together to create a community and drive awareness on biodiversity and environmental sciences," said An Luo, senior technical program manager leading the Amazon Research Awards program. “We are very excited that AWS is empowering them to serve more people as well as conduct advanced machine learning research using the AWS Open Data platform and AWS machine learning services such as Amazon SageMaker.”

Today, iNaturalist has gone from being entirely people-powered to regularly providing machine-generated identifications that are only just beginning to reveal new potential research paths.

"It's important for us that this data lasts and is accessible for a long time, not just for the duration of the competitions," Mac Aodha said. "Having a stable home for these datasets is a really valuable thing."

Related content

IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Have you ever wondered how Amazon launches and maintains a consistent customer experience across hundreds of countries and languages it serves its customers? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! At Amazon, we strive to be Earth's most customer-centric company, where both internal and external customers can find and discover anything they want in their own language of preference. Our Translations Services (TS) team plays a pivotal role in expanding the reach of our marketplace worldwide and enables thousands of developers and other stakeholders (Product Managers, Program Managers, Linguists) in developing locale specific solutions. Amazon Translations Services (TS) is seeking an Applied Scientist to be based in our Seattle office. As a key member of the Science and Engineering team of TS, this person will be responsible for designing algorithmic solutions based on data and mathematics for translating billions of words annually across 130+ and expanding set of locales. The successful applicant will ensure that there is minimal human touch involved in any language translation and accurate translated text is available to our worldwide customers in a streamlined and optimized manner. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way customers and stakeholders engage with Amazon and our platform worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Key job responsibilities * Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language translation-related challenges in the eCommerce space. * Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. * Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. * Continuously explore and evaluate state-of-the-art modeling techniques and methodologies to improve the accuracy and efficiency of language translation-related systems. * Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. About the team We are a start-up mindset team. As the long-term technical strategy is still taking shape, there is a lot of opportunity for this fresh Science team to innovate by leveraging Gen AI technoligies to build scalable solutions from scratch. Our Vision: Language will not stand in the way of anyone on earth using Amazon products and services. Our Mission: We are the enablers and guardians of translation for Amazon's customers. We do this by offering hands-off-the-wheel service to all Amazon teams, optimizing translation quality and speed at the lowest cost possible.