Pictured above is an overpass that collapsed on Highway 10 in the Northridge/Reseda, California area, which was at the epicenter of a 1994 earthquake.
This photo shows an overpass that collapsed on Highway 10 in the Northridge/Reseda, California area which was at the epicenter of earthquake in 1994.
Joe Sohm/spiritofamerica - stock.adobe.co

How AWS contributes to an earthquake safety system for the US West Coast

With the help of new machine learning techniques, a team at Caltech is upgrading their system to help scientists identify more earthquakes — and understand why they happen.  

Every second of every day, ground motion data is collected from more than 500 sites in California, ranging from the southernmost end (including the Baja peninsula) into the central part of the state.

Not only is that a lot of data, it might also contain urgent signals: Signs of a major earthquake can lie buried amidst thousands of normal ground motion shifts. (Southern California alone sees a quake every three minutes.)

The information is processed by algorithms that sift the data for signs of an earthquake, and both the location of these earthquakes and their magnitudes are calculated in as close to real time as possible.

“Typically, all this happens within about 60 seconds to a few minutes after the data comes in,” said professor Zachary Ross, a seismologist at the California Institute of Technology (Caltech).

We don't want to be performing computations here in Pasadena when a big earthquake knocks out the power. We've set it up so that now the data get broadcast to AWS immediately.
Zachary Ross

Those details are collected and distributed by Caltech in partnership with the US Geological Survey (USGS) through the Southern California Seismic Network (SCSN). The data, both raw and processed, are then made publicly available.

Policymakers, scientists, and academics use the data — for research on fault locations, earthquake precursors, and more — as do some early warning systems built to get the word out about larger quakes.

The expansive nature of that data, coupled with the essential role it serves, are why about four years ago Ross moved the existing system to the AWS framework.

“We don't want to be performing computations here in Pasadena when a big earthquake knocks out the power. We've set it up so that now the data get broadcast to AWS immediately,” he explained. “That way, the data continues to get processed if the power gets cut or infrastructure gets damaged.”

Now, with the help of new machine learning techniques, Ross and his team are upgrading the system in a way that could help scientists identify more earthquake events — and understand why they happen.  

Upgrades needed

The upgrade to Caltech’s system has been a long time coming. Ross noted that the algorithm the data is run on at the moment is a standard signal-processing algorithm, written in-house about 30 years ago.

“It’s been slowly updated over the years as new databases or technology have come about, but it hasn't gone through any kind of major overhaul during that time,” he said.

quakemap.png
This is a screenshot from an interactive map which tracks magnitude 2.5 and higher earthquakes. Policymakers, scientists, and academics use this data for research on fault locations, and earthquake precursors.
USGS

The outputs of the signal-processing algorithm also require constant refinement.

“We have a whole team of people here that basically spend most of their time fixing all of the mistakes that these algorithms make,” Ross said.

Due to the age of the system, the team is now working on a “complete rewrite of everything from scratch using a cloud-native framework,” Ross said. He explained the big push to do this now stems from advances in machine learning technology in the past few years. Because the existing systems are labor-intensive, and because the way the work is done now would make it impossible to incorporate modern machine learning, they needed to start afresh.

Ross’ research group at Caltech has been working on developing new algorithms that are more efficient and more sensitive for better, more automated data monitoring. These advances include the incorporation of deep learning algorithms, which allow for routine detection of three to five times more events.

The upgrade will also allow the team to better utilize the high quality data available to them.

“In seismology, we have a lot of labeled data available to us,” Ross said. “That’s because we have these professional seismic analysts who have been manually measuring all these events and locating them for many decades at this point.”

Better basic earthquake science

Updating the system helps with basic science mission too. Currently, not all of the data collected by Caltech can be analyzed, due to time limitations (all those hours spent making corrections). So certain subsets of the data, like larger events, are prioritized.

However, only being able to analyze larger quakes means a lot of important data processing isn’t happening. If the Caltech team were able to look at the smaller, more frequent quakes, scientists could get incredibly useful information. That owes to the nature of earthquakes.

Animation of a scenario M6.9 earthquake on the Rose Canyon fault
This video presents an animation of computer-simulated ground motions that might occur for a magnitude 6.9 earthquake rupturing the Rose Canyon fault in southern California. This simulation highlights the complex nature of seismic waves that are created during fault rupture, including the strong rupture directivity effects that would impact the densely populated areas near San Diego and Tijuana.

An earthquake isn’t just ground motion at a certain scale or location — it’s the sudden unstable movement of a fault at depth. And leading up to that slippage isn’t necessarily a single event, but often a sequence of events — earthquakes tend to trigger other earthquakes. Thus, larger events are sometimes triggered by smaller events that precede them. This cascading phenomenon means that it’s incredibly useful for scientists like Ross to study earthquakes in a complete sequence — and that means being able to reliably identify smaller earthquakes as well.

That’s also where the data grows exponentially.

Geologists with USGS, the California Geological Survey (CGS) and Naval Air Weapons Station China Lake (NAWS) worked together in response to the Ridgecrest earthquake sequence in California that occurred July 4-6, 2019. The earthquakes were large enough that the fault rupture reached the earth’s surface. Here, research geologist Belle Philibosian was part of a USGS field team working with Gordon Seitz (CGS) and Stephan Bock (NAWS) in the Ridgecrest area on the NAWS documenting fault offsets through direct measurements using tools ranging from tape measures to mobile laser scanning.
Geologists documented fault offsets after the Ridgecrest earthquake sequence in California that occurred in 2019.
Katherine Kendrick, USGS

“Earthquakes have a scientifically well-known characteristic, which is that the smaller they get, the more of them occur,” Ross explained. “Every time we go down a magnitude unit, there's about 10 times more quakes that that occur.”

Reliably measuring smaller quakes means seismologists can also figure out where faults lie, another key to better understanding earthquakes. If you can take a greater number of smaller earthquakes and plot their hypocenters on a map, “those hypocenters will tell you something about where the faults are located at depth, which is very difficult to know otherwise, because we can't drill down that deep. We're talking about, often, eight miles below the surface, which is just impossible to get down to,” Ross explained.

To handle that much data, Ross and his team are relying on a grant of AWS Promotional Credits to build their prototype system. The data is streamed on Amazon Kinesis, which is used to collect and process large streams of data in real time.

There are millions of people living in the part of California that this system is authoritative over, so it’s really important to have it working correctly.
Zachary Ross

This increased reliability and sensitivity will enable Ross and his team to detect “something like a factor of five times more smaller events” using the new generation of algorithms.

“The vast majority of what we're recording right now is being missed, which is a pretty remarkable statement,” Ross said.

Once the new system is up and running, it will be observed in action for several years. The information could potentially be made available sooner, but would be labeled as “experimental” or something similar.

Ross stresses the importance of getting this right: “There are millions of people living in the part of California that this system is authoritative over, so it’s really important to have it working correctly.”

Related content

US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You’ll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you’re fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA
US, WA, Redmond
Project Kuiper is an initiative to launch a constellation of Low Earth Orbit satellites that will provide low-latency, high-speed broadband connectivity to unserved and underserved communities around the world. We are searching for talented candidates with experience in spaceflight trajectory modeling and simulation, orbit mechanics, and launch vehicle mission planning. Key job responsibilities This position requires experience in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires experience in software development for astrodynamics applications and expertise in supporting mission workflow for satellite operations. Strong analysis skills are required to develop engineering studies of complex large-scale dynamical systems. This position requires demonstrated expertise in computational analysis automation and tool development. Working with the Kuiper engineering team, you will: - Develop modeling techniques for analysis and simulation of deployment dynamics of multiple satellites - Support Project Kuiper’s Launch Vehicle Mission Management team with technical expertise in Launch Vehicle trajectory requirements specification - Develop tools to support Mission Management planning for over 80 launches! - Work collaboratively with launch vehicle system technical teams - Provide support of algorithm development and testing for the Kuiper Flight Dynamics System. - Provide software development support of production code. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are open to hiring candidates to work out of one of the following locations: Redmond, WA, USA
CN, 11, Beijing
Are you interested in applying your strong quantitative analysis and big data skills to world-changing problems? Are you interested in driving the development of methods, models and systems for strategy planning, transportation and fulfillment network? Are you interested to cooperate with Amazonians around the world? If so, then this is the job for you. Our team, ATE(Analytics Technology and Engineering) is looking for an Applied Scientist to join our growing Science Team in Bangalore (India)/ Beijing(China). We are responsible for creating core analytics tech capabilities, quantative models, platforms development, and data engineering. We develop scalable analytics applications and research models to optimize operations processes. We standardize and optimize data sources and visualization efforts across geographies, build up, and maintain the online business intelligence services and data mart. You will work with other scientists, professional data engineers, business intelligence engineers, and product managers using rigorous quantitative approaches to ensure high quality data tech products for our customers around the world, including India, Australia, Brazil, Mexico, Singapore and Middle East. Amazon is growing rapidly and because we are driven by faster delivery to customers, a more efficient supply chain network, and lower cost of operations, our main focus is in the development of strategic models and automation tools fed by our massive amounts of available data. You will be responsible for building these models/tools that improve the economics of Amazon’s worldwide fulfillment networks in different countries as Amazon increases the speed and decreases the cost to deliver products to customers. You will work on large-scale vehicle routing and scheduling problems under complex operational and physical constraints. You will also identify and evaluate opportunities to reduce variable costs by improving fulfillment center processes, transportation operations and scheduling, and the execution of operational plans. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools. Key job responsibilities - Design and develop complex mathematical, simulation and optimization models and apply them to define strategic and tactical needs and drive the appropriate business and technical solutions in the areas of vehicle routing, inventory management, network flow, supply chain optimization, demand planning. - Apply theories of mathematical optimization, including linear programming, combinatorial optimization, integer programming, dynamic programming, network flows and algorithms to design optimal or near optimal solution methodologies to be used by in-house decision support tools and software. - Translating business questions and concerns into specific analytical questions that can be answered with available data using Statistical and Machine Learning methods. - Prototype models by using modeling and programming languages with efficient data querying and modeling infrastructure. - Communicate proposals and results in a clear manner backed by data and coupled with actionable conclusions to drive business decisions. - Collaborate with colleagues from multidisciplinary science, engineering and business backgrounds. - Manage your own process. Prioritize and execute on high impact projects, triage external requests, and ensure to deliver projects in time. We are open to hiring candidates to work out of one of the following locations: Beijing, 11, CHN
GB, Cambridge
Our team builds generative AI solutions that will produce some of the future’s most influential voices in media and art. We develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video, with Amazon Game Studios and Alexa, the ground-breaking service that powers the audio for Echo. Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language, Audio and Video technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and generative AI models to drive the state of the art in audio (and vocal arts) generation. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. * Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR | London, GBR
GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. * Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR | London, GBR
US, VA, Arlington
The GenAI Innovation Center helps AWS customers accelerate their use of Generative AI to solve business challenges and promote innovation across their organizations. The Public Sector team focuses on public sector customers and their unique challenges. As a data scientist, you have deep and broad experience as an ML practitioner. You interface directly with customers to understand and identify their challenges that can be addressed by Generative AI. You build secure solutions that can scale to the size of the problem at hand and guide customers through your rigorous evaluation process. You'll design and run experiments, research new algorithms, and find new ways of optimizing risk, profitability, and customer experience. You're part of both a small team dedicated to public sector customers and a global organization enabling customers to accelerate their progress on GenAI. This position requires that the candidate selected be a US Citizen. AWS Sales, Marketing, and Global Services (SMGS) is responsible for driving revenue, adoption, and growth from the largest and fastest growing small- and mid-market accounts to enterprise-level customers including public sector. The AWS Global Support team interacts with leading companies and believes that world-class support is critical to customer success. AWS Support also partners with a global list of customers that are building mission-critical applications on top of AWS services. Key job responsibilities The primary responsibilities of this role are to: Design, develop, and evaluate innovative ML models to solve diverse challenges and opportunities across industries. Interact with customer directly to understand their business problems, and help them with defining and implementing scalable Generative AI solutions to solve them. Work closely with account teams, research scientist teams, and product engineering teams to drive model implementations and new solution. A day in the life 1. Team with a GenAI strategist to understand a customer problem and provide guidance on how and whether GenAI can help address the issue. 2. Share your latest experiment results or challenges with other scientists on the team. 3. Collaborate on a blog post to share the results and methods used in your most recent customer success. 4. Attend or a deliver a tech talk to highlight a project you or a team mate just completed. 5. Provide feedback to your team during a code review. 6. Meet with customer stakeholders to demonstrate the latest progress on their problem. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Denver, CO, USA
US, CA, Santa Clara
Amazon is looking for a motivated individual with strong analytical and algorithmic skills and practical experience to join the Modeling and Optimization (MOP) Routing Science team. Your main focus will be on developing and improving our last-mile experience, with emphasis on algorithmic and analytical work. We are looking for candidates with proven ability to design, implement, and evaluate state-of-the-art solutions to large-scale optimization problems, working closely with software development engineers. The position requires strong background in combinatorial optimization, algorithms, algorithm engineering, and data structures, particularly as it applies to vehicle routing and related problems. Familiarity with data science and Machine Learning techniques is a plus. You will also play an integral role in the network planning, modeling, and analysis that will improve the efficiency and cost effectiveness of global fulfillment operations. You will identify and evaluate opportunities to reduce variable costs by improving the transportation network topology, inventory placement, transportation operations and scheduling, fulfillment center processes, and the execution to operational plans. You will also improve the efficiency of capital investment by helping plan the location and deployment of fixed assets. Finally, you will help create the metrics to quantify improvements to the fulfillment costs (e.g., transportation and labor costs) resulting from the application of these optimization models and tools. Key job responsibilities We are looking for candidates with proven ability to design, implement, and evaluate state-of-the-art solutions to large-scale optimization problems, working closely with software development engineers. The position requires strong background in combinatorial optimization, algorithms, algorithm engineering, and data structures, particularly as it applies to vehicle routing problems. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, MA, North Reading
We are looking for experienced scientists and engineers to explore new ideas, invent new approaches, and develop new solutions in the areas of Controls, Dynamic modeling and System identification. Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Key job responsibilities Applied Scientists take on big unanswered questions and guide development team to state-of-the-art solutions. We want to hear from you if you have deep industry experience in the Mechatronics domain and : * the ability to think big and conceive of new ideas and novel solutions; * the insight to correctly identify those worth exploring; * the hands-on skills to quickly develop proofs-of-concept; * the rigor to conduct careful experimental evaluations; * the discipline to fast-fail when data refutes theory; * and the fortitude to continue exploring until your solution is found We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Westborough, MA, USA