“Building a model that can save as many lives as possible”

How ARA recipient Supreeth Shashikumar is using machine learning to help hospitals detect sepsis — before it’s too late.

Sometimes, good luck wears bad luck's clothing — and that was certainly the case in 2015 for the young electrical and computer engineer Supreeth Shashikumar, when his hunt for a PhD project came up empty. At the Georgia Institute of Technology, no professors were looking for students with his specialty — speech recognition and voice processing.

Supreeth_photo.jpeg
Supreeth Shashikumar, a research scientist at the University of California, San Diego, whose Amazon Research Award supports his research on using machine learning models to predict the onset of sepsis.

So Shashikumar decided to cast his net into a different field and came across a visionary mentor in Shamim Nemati, then an assistant professor in the Department of Biomedical Informatics at the Emory University in Atlanta, where he was also leading the Nemati Lab.

Today, Shashikumar and Nemati are continuing their collaboration at the University of California, San Diego (UCSD), and the medical technology they developed together, supported by an Amazon Research Award, is safeguarding and saving the lives of hospital patients. But let's rewind for a moment.

Back in 2015, when Shashikumar was still stymied in his search, he shifted his focus slightly from speech recognition to the somewhat similar field of biomedical signal processing. The fields overlap in that both are reliant on time series data, such as voice recordings or electrocardiograms.

Shashikumar saw that the Nemati Lab was pioneering the use of time series data held in hospital patients' electronic health records (EHRs) to develop early-warning systems that can aid clinicians by flagging patients who may be on the verge of sudden deterioration. Shashikumar found that to be a compelling idea, so he reached out to Nemati.

“It was a gamble, but it paid off,” Shashikumar says.

Taking on Shashikumar was an easy decision, says Nemati. “Georgia Tech produces some of the best engineers in the country. Add to that somebody who also enjoys bungee jumping and at the same time is extremely detail-oriented, and you’ll get a 10x engineer with a desire to push himself to the limits.” There they started on a multiyear journey toward the development of clinically actionable predictive models in healthcare. Shashikumar would later move with the Nemati Lab to its current home at UCSD.

Related content
Method enforces “coherence” of hierarchical time series, in which the values at each level of the hierarchy are sums of the values at the level below.

The lab’s main focus is the onset of sepsis in hospital emergency departments (EDs), wards, and intensive-care units (ICUs). Sepsis is a sudden and life-threatening condition caused by an infection entering the bloodstream, triggering a catastrophic immune response that can lead to organ failure, septic shock, and death. It is a medical emergency that requires early and aggressive treatment with antibiotics. According to the US-based Sepsis Alliance, for every hour that treatment is delayed, the chance of sepsis moving through severe sepsis to septic shock and death rises by 4%-9%.

ED clinicians are constantly monitoring for signs of sepsis, such as fever and elevated heart rate or respiratory rate. When they suspect sepsis, they order lab tests to look for markers of organ damage. Thus detection, particularly early detection, is crucial.

Shashikumar was drawn to the fact that the Nemati Lab was focused on developing deployable technology. Many researchers take historical time-series patient data from single hospitals and create models to make predictions based on that data, but there is often a chasm between theory and practical deployment, due to the many challenges of working in the healthcare space.

“For us, whenever we pick a project, we are interested in how we can deploy a model into the real world, to do some good by making it clinically actionable,” says Shashikumar. “And, crucially, also make it generalizable.”

This generalizability of medical models is critical if machine learning is to realize its enormous potential benefit to patients.

“Generalizability is about ensuring that your claims about the performance of your model hold in other healthcare system settings,” says Nemati.

For example, say a machine learning model was trained to successfully predict the onset of sepsis in patients in hospital A, using data from that hospital. Could that model then be usefully applied to hospital B with different patient demographics, standards of care, and testing and monitoring procedures? And could it generalize again to hospitals C and D, too? It is an incredibly difficult challenge and one of the reasons for the chasm between research and implementation.

WUPERR

In 2022, in Nature Scientific Reports, Shashikumar and the Nemati team demonstrated that it was indeed possible, with a model called WUPERR (weight uncertainty propagation and episodic representation replay). The model was trained on the EHR data of more than 104,000 patients across four separate healthcare systems. The patient data included over 40 inputs, including ongoing vital signs such as blood pressure and pulse rate, lab test results such as lactate levels in the blood and white blood cell count, patient age, and comorbidities, such as cancer or liver failure.

Related content
ARA recipient Marinka Zitnik is focused on how machine learning can enable accurate diagnoses and the development of new treatments and therapies.

The model overcame several big scientific and practical hurdles inherent to generalization across multiple hospitals: "catastrophic forgetting" and the necessity of keeping patient data confidential.

Catastrophic forgetting is a common problem with transfer learning. When a predictive model is successfully trained on one hospital (hospital A) and then transferred to the next (hospital B), the process will often involve fine-tuning the model on data from hospital B, as no two hospitals are the same. There's a risk, however, that the introduction of new hospital B data will lead the model to "forget" what it learned from hospital A's data.

In theory, one could keep the original model for hospital A and use the fine-tuned model for hospital B, and so on for hospitals C and D. However, not only is this approach impractical, but it also presents a daunting level of regulatory hurdles, according to Shashikumar. Having to deal with a growing number of different models, each of which must meet FDA evaluation and regulation, is simply not scalable.

WUPERR, however, tested a different solution using historical hospital data — a technique called "elastic weight consolidation". This approach echoes a concept found in cognitive neuroscience, according to Shashikumar.

"There are a bunch of neurons in your brain that are trained in the tasks you’ve learned,” he explains. “When you learn a new, similar task, you build on your previous experience — but you don't interfere with those neurons. Instead, you teach additional neurons the nuances of the new task."

With this approach — but with neurons replaced by adjustable model parameters — the team was able to maintain high accuracy in their sepsis predictions across the board with every new hospital added to the pool. By the end, the very accurate sepsis predictions for four hospitals were successfully produced by one model — an important advance.

Related content
Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

You may now wonder: How could this model share fiercely protected patient data between separate hospitals? This is the second hurdle that WUPERR overcame, using a technique called “episodic representation replay.” In simple terms, this means that when the model was trained on hospital A's patient data, that data is passed through a neural network that strips away all patient identifiers and creates a representation of the data that is safe to share. The representations of the data are then shown to the model while training at the next hospital.

"I believe this was the first application of sharing neural-network representations from an older hospital with a new hospital in the context of sepsis prediction," says Shashikumar.

The result of all this is a single, manageable model that can generalize across a whole set of hospitals, with all the institutions involved benefiting from each other's patient data while never actually having access to it.

“There is beauty in generalizable knowledge and generalizable models, like a unified theory of everything,” says Nemati.

Things get real

Today the latest iteration of WUPERR is in live action in the ED of a UC San Diego Health hospital, providing clinicians with early warnings about patients predicted to develop sepsis in the next four hours. This version of WUPERR has also been augmented with, among other things, a statistical model that monitors its input data for quality, helping to reduce false alarms.

Related content
With the support of an Amazon Research Award, Papoian’s team is deciphering the dynamics of intrinsically disordered proteins.

That’s important because false alarms are a big problem in sepsis detection. The hospital’s previous, less sophisticated system had a high rate of false alarms. Working with clinicians at the hospital, Shashikumar and his colleagues were able to tune WUPERR to predict 60% of all sepsis events. In the closely monitored environment of the ED, clinicians are expected to catch some portion of the sepsis cases with obvious signs and symptoms, and WUPERR provides a second pair of eyes to provide earlier warning and potentially catch additional cases of sepsis. What is critical to the clinicians is that false alarms, and the burdens they entail, remain low. While about half of WUPERR’s predictions were false alarms, that rate is relatively low, given the seriousness of sepsis.

Missed detections are also of great concern and are often attributable to patient complexity, inadequate monitoring, and low availability of data. Here, the team is applying active sensing to make timely recommendations for collecting sepsis-specific biomarkers in high-risk patients. The latest generation of the system combines false-alarm reduction with active sensing to achieve state-of-the-art performance.

The system has been in place for four months, with data collection ongoing. The clinicians in the ED have reported that, on average, the alarm is going off an hour or two earlier than when the doctors would have started to suspect an infection.

“They’re happy with that performance, particularly the lower false-alarm rate. It’s a very good validation of our work,” says Shashikumar. “But we still have a long way to go. In time, we want to extend this to other hospitals, intensive-care units, and hospital wards across the US and the world.”

The scaling up of this life-saving service is made easier by the fact that WUPERR is entirely cloud-based and hosted on Amazon Web Services.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

“Using AWS services has been great for us," says Shashikumar. "Our sepsis software is running in real time in the hospital lab, and that’s mission-critical — it has to be up and running 100% of the time, without fail.” The team makes use of a wide range of AWS services, including autoscaling, load balancing, fault tolerance, and CloudWatch alarms.

Deploying the model in different locations is also greatly simplified. AWS provides HIPAA-compliant infrastructure, which is legally required to protect private health data transmitted to the cloud.

In fact, when the Nemati Lab moved to UC San Diego, they had to decide whether to buy their own in-house servers or move to the cloud. They moved the entirety of their computing services to AWS. “It has been super convenient,” says Shashikumar.

Last year, Nemati's team, including Shashikumar, co-founded Healcisio, a startup, as part of an effort to commercialize their model and ultimately receive FDA clearance, which will be essential for deploying the system to multiple hospitals in the US and abroad.

Meanwhile, they have great ambitions to improve the model. For now, it is limited to the time series data in EHRs. But the team’s current focus is on multimodal data, including wearable sensors, clinical notes, imaging, and more. They want their model to see everything a clinician has access to when they treat patients — all the contextual information — and additionally address “data deserts” via continuous monitoring of patients and active sensing.

Increasing the sensitivity of the model and reducing its false-alarm rate even further is the ultimate goal.

“At the end of the day, our focus is on building a model that can save as many lives as possible,” Shashikumar said. “I didn't get into healthcare out of passion, but it has become my passion.”

Research areas

Related content

US, CA, Pasadena
We’re on the lookout for the curious, those who think big and want to define the world of tomorrow. At Amazon, you will grow into the high impact, visionary person you know you’re ready to be. Every day will be filled with exciting new challenges, developing new skills, and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. The Amazon Web Services (AWS) Center for Quantum Computing (CQC) in Pasadena, CA, is looking for a Quantum Research Scientist Intern in the Device and Architecture Theory group. You will be joining a multi-disciplinary team of scientists, engineers, and technicians, all working at the forefront of quantum computing to innovate for the benefit of our customers. Key job responsibilities As an intern with the Device and Architecture Theory team, you will conduct pathfinding theoretical research to inform the development of next-generation quantum processors. Potential focus areas include device physics of superconducting circuits, novel qubits and gate schemes, and physical implementations of error-correcting codes. You will work closely with both theorists and experimentalists to explore these directions. We are looking for candidates with excellent problem-solving and communication skills who are eager to work collaboratively in a team environment. Amazon Science gives you insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in quantum computing and related fields. Our scientists continue to publish, teach, and engage with the academic community, in addition to utilizing our working backwards method to enrich the way we live and work. A day in the life Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, MA, Boston
**This is a 12 month contract opportunity with the possibility to extend based on business needs** Embark on a transformative journey as our Domain Expert Lead, where intellectual rigor meets cutting-edge technological innovation. In this pivotal role, you will serve as a strategic architect of data integrity, leveraging your domain expertise to advance AI model training and evaluation. Your domain knowledge and experience will be instrumental in elevating our artificial intelligence capabilities, meticulously refining data collection processes and ensuring the highest standards of quality and precision across complex computational landscapes. Key job responsibilities • Critically analyze and evaluate responses generated by our LLMs across various domains and use cases in your area of expertise. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Participate in the creation of tooling that helps create such data by providing your feedback on what works and what doesn’t. • Champion effective knowledge-sharing initiatives by translating domain expertise into actionable insights, while cultivating strategic partnerships across multidisciplinary teams. • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output • Collaborate with the AI research team to identify areas for improvement in the LLM’s capabilities • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge.
US, CA, Pasadena
Do you enjoy solving challenging problems and driving innovations in research? As a Research Science intern with the Quantum Algorithms Team at CQC, you will work alongside global experts to develop novel quantum algorithms, evaluate prospective applications of fault-tolerant quantum computers, and strengthen the long-term value proposition of quantum computing. A strong candidate will have experience applying methods of mathematical and numerical analysis to assess the performance of quantum algorithms and establish their advantage over classical algorithms. Key job responsibilities We are particularly interested in candidates with expertise in any of the following subareas related to quantum algorithms: quantum chemistry, many-body physics, quantum machine learning, cryptography, optimization theory, quantum complexity theory, quantum error correction & fault tolerance, quantum sensing, and scientific computing, among others. A day in the life Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. This is not a remote internship opportunity. About the team Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 1-2 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in hardware design for cryogenic environements. The candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for scaling the signal delivery to AWS quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You'll bring passion, enthusiasm, and innovation to work on the following: - High density novel packaging solutions for quantum processor units. - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies. - Cryogenic mechanical design for signal delivery systems. - Simulation driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery. A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders. - Work cross-functionally to help drive decisions using your unique technical background and skill set. - Refine and define standards and processes for operational excellence. - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Santa Clara
Amazon Web Services (AWS) is assembling an elite team of world-class scientists and engineers to pioneer the next generation of AI-driven development tools. Join the Amazon Kiro LLM-Training team and help create groundbreaking generative AI technologies including Kiro IDE and Amazon Q Developer that are transforming the software development landscape. Key job responsibilities As a key member of our team, you'll be at the forefront of innovation, where cutting-edge research meets real-world application: - Push the boundaries of reinforcement learning and post-training methodologies for large language models specialized in code intelligence - Invent and implement state-of-the-art machine learning solutions that operate at unprecedented Amazon scale - Deploy revolutionary products that directly impact the daily workflows of millions of developers worldwide - Break new ground in AI and machine learning, challenging what's possible in intelligent code assistance - Publish and present your pioneering work at premier ML and NLP conferences (NeurIPS, ICML, ICLR , ACL, EMNLP) - Accelerate innovation by working directly with customers to rapidly transition research breakthroughs into production systems About the team The AWS Developer Agents and Experiences (DAE) team is reimagining the builder experience through generative AI and foundation models. We're leveraging the latest advances in AI to transform how engineers work from IDE environments to web-based tools and services, empowering developers to tackle projects of any scale with unprecedented efficiency. Broadly, AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Redmond
As a Guidance, Navigation & Control Hardware Engineer, you will directly contribute to the planning, selection, development, and acceptance of Guidance, Navigation & Control hardware for Amazon Leo's constellation of satellites. Specializing in critical satellite hardware components including reaction wheels, star trackers, magnetometers, sun sensors, and other spacecraft sensors and actuators, you will play a crucial role in the integration and support of these precision systems. You will work closely with internal Amazon Leo hardware teams who develop these components, as well as Guidance, Navigation & Control engineers, software teams, systems engineering, configuration & data management, and Assembly, Integration & Test teams. A key aspect of your role will be actively resolving hardware issues discovered during both factory testing phases and operational space missions, working hand-in-hand with internal Amazon Leo hardware development teams to implement solutions and ensure optimal satellite performance. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. Key job responsibilities * Lead the planning and coordination of resources necessary to successfully accept and integrate satellite Guidance, Navigation & Control components including reaction wheels, star trackers, magnetometers, and sun sensors provided by internal Amazon Leo teams * Partner with internal Amazon Leo hardware teams to develop and refine spacecraft actuator and sensor solutions, ensuring they meet requirements and providing technical guidance for future satellite designs * Collaborate with internal Amazon Leo hardware development teams to resolve issues discovered during both factory test phases and operational space missions, implementing corrective actions and design improvements * Work with internal Amazon Leo teams to ensure state-of-the-art satellite hardware technologies including precision pointing systems, attitude determination sensors, and spacecraft actuators meet mission requirements * Lead verification and testing activities, ensuring satellite Guidance, Navigation & Control hardware components meet stringent space-qualified requirements * Drive implementation of hardware-in-the-loop testing for satellite systems, coordinating with internal Amazon Leo hardware engineers to validate component performance in simulated space environments * Troubleshoot and resolve complex hardware integration issues working directly with internal Amazon Leo hardware development teams
US, MA, Boston
**This is a 12 month contract opportunity with the possibility to extend based on business needs** Embark on a transformative journey as our Domain Expert Lead, where intellectual rigor meets cutting-edge technological innovation. In this pivotal role, you will serve as a strategic architect of data integrity, leveraging your domain expertise to advance AI model training and evaluation. Your domain knowledge and experience will be instrumental in elevating our artificial intelligence capabilities, meticulously refining data collection processes and ensuring the highest standards of quality and precision across complex computational landscapes. Key job responsibilities • Critically analyze and evaluate responses generated by our LLMs across various domains and use cases in your area of expertise. • Develop and write demonstrations to illustrate "what good data looks like" in terms of meeting benchmarks for quality and efficiency • Participate in the creation of tooling that helps create such data by providing your feedback on what works and what doesn’t. • Champion effective knowledge-sharing initiatives by translating domain expertise into actionable insights, while cultivating strategic partnerships across multidisciplinary teams. • Provide detailed feedback and explanations for your evaluations, helping to refine and improve the LLM's understanding and output • Collaborate with the AI research team to identify areas for improvement in the LLM’s capabilities • Stay abreast of the latest developments in how LLMs and GenAI can be applied to your area of expertise to ensure our evaluations remain cutting-edge.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a dynamic, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.