“Building a model that can save as many lives as possible”

How ARA recipient Supreeth Shashikumar is using machine learning to help hospitals detect sepsis — before it’s too late.

Sometimes, good luck wears bad luck's clothing — and that was certainly the case in 2015 for the young electrical and computer engineer Supreeth Shashikumar, when his hunt for a PhD project came up empty. At the Georgia Institute of Technology, no professors were looking for students with his specialty — speech recognition and voice processing.

Supreeth_photo.jpeg
Supreeth Shashikumar, a research scientist at the University of California, San Diego, whose Amazon Research Award supports his research on using machine learning models to predict the onset of sepsis.

So Shashikumar decided to cast his net into a different field and came across a visionary mentor in Shamim Nemati, then an assistant professor in the Department of Biomedical Informatics at the Emory University in Atlanta, where he was also leading the Nemati Lab.

Today, Shashikumar and Nemati are continuing their collaboration at the University of California, San Diego (UCSD), and the medical technology they developed together, supported by an Amazon Research Award, is safeguarding and saving the lives of hospital patients. But let's rewind for a moment.

Back in 2015, when Shashikumar was still stymied in his search, he shifted his focus slightly from speech recognition to the somewhat similar field of biomedical signal processing. The fields overlap in that both are reliant on time series data, such as voice recordings or electrocardiograms.

Shashikumar saw that the Nemati Lab was pioneering the use of time series data held in hospital patients' electronic health records (EHRs) to develop early-warning systems that can aid clinicians by flagging patients who may be on the verge of sudden deterioration. Shashikumar found that to be a compelling idea, so he reached out to Nemati.

“It was a gamble, but it paid off,” Shashikumar says.

Taking on Shashikumar was an easy decision, says Nemati. “Georgia Tech produces some of the best engineers in the country. Add to that somebody who also enjoys bungee jumping and at the same time is extremely detail-oriented, and you’ll get a 10x engineer with a desire to push himself to the limits.” There they started on a multiyear journey toward the development of clinically actionable predictive models in healthcare. Shashikumar would later move with the Nemati Lab to its current home at UCSD.

Related content
Method enforces “coherence” of hierarchical time series, in which the values at each level of the hierarchy are sums of the values at the level below.

The lab’s main focus is the onset of sepsis in hospital emergency departments (EDs), wards, and intensive-care units (ICUs). Sepsis is a sudden and life-threatening condition caused by an infection entering the bloodstream, triggering a catastrophic immune response that can lead to organ failure, septic shock, and death. It is a medical emergency that requires early and aggressive treatment with antibiotics. According to the US-based Sepsis Alliance, for every hour that treatment is delayed, the chance of sepsis moving through severe sepsis to septic shock and death rises by 4%-9%.

ED clinicians are constantly monitoring for signs of sepsis, such as fever and elevated heart rate or respiratory rate. When they suspect sepsis, they order lab tests to look for markers of organ damage. Thus detection, particularly early detection, is crucial.

Shashikumar was drawn to the fact that the Nemati Lab was focused on developing deployable technology. Many researchers take historical time-series patient data from single hospitals and create models to make predictions based on that data, but there is often a chasm between theory and practical deployment, due to the many challenges of working in the healthcare space.

“For us, whenever we pick a project, we are interested in how we can deploy a model into the real world, to do some good by making it clinically actionable,” says Shashikumar. “And, crucially, also make it generalizable.”

This generalizability of medical models is critical if machine learning is to realize its enormous potential benefit to patients.

“Generalizability is about ensuring that your claims about the performance of your model hold in other healthcare system settings,” says Nemati.

For example, say a machine learning model was trained to successfully predict the onset of sepsis in patients in hospital A, using data from that hospital. Could that model then be usefully applied to hospital B with different patient demographics, standards of care, and testing and monitoring procedures? And could it generalize again to hospitals C and D, too? It is an incredibly difficult challenge and one of the reasons for the chasm between research and implementation.

WUPERR

In 2022, in Nature Scientific Reports, Shashikumar and the Nemati team demonstrated that it was indeed possible, with a model called WUPERR (weight uncertainty propagation and episodic representation replay). The model was trained on the EHR data of more than 104,000 patients across four separate healthcare systems. The patient data included over 40 inputs, including ongoing vital signs such as blood pressure and pulse rate, lab test results such as lactate levels in the blood and white blood cell count, patient age, and comorbidities, such as cancer or liver failure.

Related content
ARA recipient Marinka Zitnik is focused on how machine learning can enable accurate diagnoses and the development of new treatments and therapies.

The model overcame several big scientific and practical hurdles inherent to generalization across multiple hospitals: "catastrophic forgetting" and the necessity of keeping patient data confidential.

Catastrophic forgetting is a common problem with transfer learning. When a predictive model is successfully trained on one hospital (hospital A) and then transferred to the next (hospital B), the process will often involve fine-tuning the model on data from hospital B, as no two hospitals are the same. There's a risk, however, that the introduction of new hospital B data will lead the model to "forget" what it learned from hospital A's data.

In theory, one could keep the original model for hospital A and use the fine-tuned model for hospital B, and so on for hospitals C and D. However, not only is this approach impractical, but it also presents a daunting level of regulatory hurdles, according to Shashikumar. Having to deal with a growing number of different models, each of which must meet FDA evaluation and regulation, is simply not scalable.

WUPERR, however, tested a different solution using historical hospital data — a technique called "elastic weight consolidation". This approach echoes a concept found in cognitive neuroscience, according to Shashikumar.

"There are a bunch of neurons in your brain that are trained in the tasks you’ve learned,” he explains. “When you learn a new, similar task, you build on your previous experience — but you don't interfere with those neurons. Instead, you teach additional neurons the nuances of the new task."

With this approach — but with neurons replaced by adjustable model parameters — the team was able to maintain high accuracy in their sepsis predictions across the board with every new hospital added to the pool. By the end, the very accurate sepsis predictions for four hospitals were successfully produced by one model — an important advance.

Related content
Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

You may now wonder: How could this model share fiercely protected patient data between separate hospitals? This is the second hurdle that WUPERR overcame, using a technique called “episodic representation replay.” In simple terms, this means that when the model was trained on hospital A's patient data, that data is passed through a neural network that strips away all patient identifiers and creates a representation of the data that is safe to share. The representations of the data are then shown to the model while training at the next hospital.

"I believe this was the first application of sharing neural-network representations from an older hospital with a new hospital in the context of sepsis prediction," says Shashikumar.

The result of all this is a single, manageable model that can generalize across a whole set of hospitals, with all the institutions involved benefiting from each other's patient data while never actually having access to it.

“There is beauty in generalizable knowledge and generalizable models, like a unified theory of everything,” says Nemati.

Things get real

Today the latest iteration of WUPERR is in live action in the ED of a UC San Diego Health hospital, providing clinicians with early warnings about patients predicted to develop sepsis in the next four hours. This version of WUPERR has also been augmented with, among other things, a statistical model that monitors its input data for quality, helping to reduce false alarms.

Related content
With the support of an Amazon Research Award, Papoian’s team is deciphering the dynamics of intrinsically disordered proteins.

That’s important because false alarms are a big problem in sepsis detection. The hospital’s previous, less sophisticated system had a high rate of false alarms. Working with clinicians at the hospital, Shashikumar and his colleagues were able to tune WUPERR to predict 60% of all sepsis events. In the closely monitored environment of the ED, clinicians are expected to catch some portion of the sepsis cases with obvious signs and symptoms, and WUPERR provides a second pair of eyes to provide earlier warning and potentially catch additional cases of sepsis. What is critical to the clinicians is that false alarms, and the burdens they entail, remain low. While about half of WUPERR’s predictions were false alarms, that rate is relatively low, given the seriousness of sepsis.

Missed detections are also of great concern and are often attributable to patient complexity, inadequate monitoring, and low availability of data. Here, the team is applying active sensing to make timely recommendations for collecting sepsis-specific biomarkers in high-risk patients. The latest generation of the system combines false-alarm reduction with active sensing to achieve state-of-the-art performance.

The system has been in place for four months, with data collection ongoing. The clinicians in the ED have reported that, on average, the alarm is going off an hour or two earlier than when the doctors would have started to suspect an infection.

“They’re happy with that performance, particularly the lower false-alarm rate. It’s a very good validation of our work,” says Shashikumar. “But we still have a long way to go. In time, we want to extend this to other hospitals, intensive-care units, and hospital wards across the US and the world.”

The scaling up of this life-saving service is made easier by the fact that WUPERR is entirely cloud-based and hosted on Amazon Web Services.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

“Using AWS services has been great for us," says Shashikumar. "Our sepsis software is running in real time in the hospital lab, and that’s mission-critical — it has to be up and running 100% of the time, without fail.” The team makes use of a wide range of AWS services, including autoscaling, load balancing, fault tolerance, and CloudWatch alarms.

Deploying the model in different locations is also greatly simplified. AWS provides HIPAA-compliant infrastructure, which is legally required to protect private health data transmitted to the cloud.

In fact, when the Nemati Lab moved to UC San Diego, they had to decide whether to buy their own in-house servers or move to the cloud. They moved the entirety of their computing services to AWS. “It has been super convenient,” says Shashikumar.

Last year, Nemati's team, including Shashikumar, co-founded Healcisio, a startup, as part of an effort to commercialize their model and ultimately receive FDA clearance, which will be essential for deploying the system to multiple hospitals in the US and abroad.

Meanwhile, they have great ambitions to improve the model. For now, it is limited to the time series data in EHRs. But the team’s current focus is on multimodal data, including wearable sensors, clinical notes, imaging, and more. They want their model to see everything a clinician has access to when they treat patients — all the contextual information — and additionally address “data deserts” via continuous monitoring of patients and active sensing.

Increasing the sensitivity of the model and reducing its false-alarm rate even further is the ultimate goal.

“At the end of the day, our focus is on building a model that can save as many lives as possible,” Shashikumar said. “I didn't get into healthcare out of passion, but it has become my passion.”

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.
US, WA, Seattle
The Search Supply & Experiences team, within Sponsored Products, is seeking an Applied Scientist to solve challenging problems in natural language understanding, personalization, and other areas using the latest techniques in machine learning. In our team, you will have the opportunity to create new ads experiences that elevate the shopping experience for our hundreds of millions customers worldwide. As an Applied Scientist, you will partner with other talented scientists and engineers to design, train, test, and deploy machine learning models. You will be responsible for translating business and engineering requirements into deliverables, and performing detailed experiment analysis to determine how shoppers and advertisers are responding to your changes. We are looking for candidates who thrive in an exciting, fast-paced environment and who have a strong personal interest in learning, researching, and creating new technologies with high customer impact. Key job responsibilities As an Applied Scientist on the Search Supply & Experiences team you will: - Perform hands-on analysis and modeling of enormous datasets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Drive end-to-end machine learning projects that have a high degree of ambiguity, scale, and complexity. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Design and run experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Stay up to date on the latest advances in machine learning. About the team We are a customer-obsessed team of engineers, technologists, product leaders, and scientists. We are focused on continuous exploration of contexts and creatives where advertising delivers value to shoppers and advertisers. We specifically work on new ads experiences globally with the goal of helping shoppers make the most informed purchase decision. We obsess about our customers and we are continuously innovating on their behalf to enrich their shopping experience on Amazon
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. About the team The International Seller Services (ISS) Economics team is a dynamic group at the forefront of shaping Amazon's global seller ecosystem. As part of ISS, we drive innovation and growth through sophisticated economic analysis and data-driven insights. Our mission is critical: we're transforming how Amazon empowers millions of international sellers to succeed in the digital marketplace. Our team stands at the intersection of innovative technology and practical business solutions. We're leading Amazon's transformation in seller services through work with Large Language Models (LLMs) and generative AI, while tackling fundamental questions about seller growth, marketplace dynamics, and operational efficiency. What sets us apart is our unique blend of rigorous economic methodology and practical business impact. We're not just analyzing data – we're building the frameworks and measurement systems that will define the future of Amazon's seller services. Whether we're optimizing the seller journey, evaluating new technologies, or designing innovative service models, our team transforms complex economic challenges into actionable insights that drive real-world results. Join us in shaping how millions of businesses worldwide succeed on Amazon's marketplace, while working on problems that combine economic theory, advanced analytics, and innovative technology.