“Building a model that can save as many lives as possible”

How ARA recipient Supreeth Shashikumar is using machine learning to help hospitals detect sepsis — before it’s too late.

Sometimes, good luck wears bad luck's clothing — and that was certainly the case in 2015 for the young electrical and computer engineer Supreeth Shashikumar, when his hunt for a PhD project came up empty. At the Georgia Institute of Technology, no professors were looking for students with his specialty — speech recognition and voice processing.

Supreeth_photo.jpeg
Supreeth Shashikumar, a research scientist at the University of California, San Diego, whose Amazon Research Award supports his research on using machine learning models to predict the onset of sepsis.

So Shashikumar decided to cast his net into a different field and came across a visionary mentor in Shamim Nemati, then an assistant professor in the Department of Biomedical Informatics at the Emory University in Atlanta, where he was also leading the Nemati Lab.

Today, Shashikumar and Nemati are continuing their collaboration at the University of California, San Diego (UCSD), and the medical technology they developed together, supported by an Amazon Research Award, is safeguarding and saving the lives of hospital patients. But let's rewind for a moment.

Back in 2015, when Shashikumar was still stymied in his search, he shifted his focus slightly from speech recognition to the somewhat similar field of biomedical signal processing. The fields overlap in that both are reliant on time series data, such as voice recordings or electrocardiograms.

Shashikumar saw that the Nemati Lab was pioneering the use of time series data held in hospital patients' electronic health records (EHRs) to develop early-warning systems that can aid clinicians by flagging patients who may be on the verge of sudden deterioration. Shashikumar found that to be a compelling idea, so he reached out to Nemati.

“It was a gamble, but it paid off,” Shashikumar says.

Taking on Shashikumar was an easy decision, says Nemati. “Georgia Tech produces some of the best engineers in the country. Add to that somebody who also enjoys bungee jumping and at the same time is extremely detail-oriented, and you’ll get a 10x engineer with a desire to push himself to the limits.” There they started on a multiyear journey toward the development of clinically actionable predictive models in healthcare. Shashikumar would later move with the Nemati Lab to its current home at UCSD.

Related content
Method enforces “coherence” of hierarchical time series, in which the values at each level of the hierarchy are sums of the values at the level below.

The lab’s main focus is the onset of sepsis in hospital emergency departments (EDs), wards, and intensive-care units (ICUs). Sepsis is a sudden and life-threatening condition caused by an infection entering the bloodstream, triggering a catastrophic immune response that can lead to organ failure, septic shock, and death. It is a medical emergency that requires early and aggressive treatment with antibiotics. According to the US-based Sepsis Alliance, for every hour that treatment is delayed, the chance of sepsis moving through severe sepsis to septic shock and death rises by 4%-9%.

ED clinicians are constantly monitoring for signs of sepsis, such as fever and elevated heart rate or respiratory rate. When they suspect sepsis, they order lab tests to look for markers of organ damage. Thus detection, particularly early detection, is crucial.

Shashikumar was drawn to the fact that the Nemati Lab was focused on developing deployable technology. Many researchers take historical time-series patient data from single hospitals and create models to make predictions based on that data, but there is often a chasm between theory and practical deployment, due to the many challenges of working in the healthcare space.

“For us, whenever we pick a project, we are interested in how we can deploy a model into the real world, to do some good by making it clinically actionable,” says Shashikumar. “And, crucially, also make it generalizable.”

This generalizability of medical models is critical if machine learning is to realize its enormous potential benefit to patients.

“Generalizability is about ensuring that your claims about the performance of your model hold in other healthcare system settings,” says Nemati.

For example, say a machine learning model was trained to successfully predict the onset of sepsis in patients in hospital A, using data from that hospital. Could that model then be usefully applied to hospital B with different patient demographics, standards of care, and testing and monitoring procedures? And could it generalize again to hospitals C and D, too? It is an incredibly difficult challenge and one of the reasons for the chasm between research and implementation.

WUPERR

In 2022, in Nature Scientific Reports, Shashikumar and the Nemati team demonstrated that it was indeed possible, with a model called WUPERR (weight uncertainty propagation and episodic representation replay). The model was trained on the EHR data of more than 104,000 patients across four separate healthcare systems. The patient data included over 40 inputs, including ongoing vital signs such as blood pressure and pulse rate, lab test results such as lactate levels in the blood and white blood cell count, patient age, and comorbidities, such as cancer or liver failure.

Related content
ARA recipient Marinka Zitnik is focused on how machine learning can enable accurate diagnoses and the development of new treatments and therapies.

The model overcame several big scientific and practical hurdles inherent to generalization across multiple hospitals: "catastrophic forgetting" and the necessity of keeping patient data confidential.

Catastrophic forgetting is a common problem with transfer learning. When a predictive model is successfully trained on one hospital (hospital A) and then transferred to the next (hospital B), the process will often involve fine-tuning the model on data from hospital B, as no two hospitals are the same. There's a risk, however, that the introduction of new hospital B data will lead the model to "forget" what it learned from hospital A's data.

In theory, one could keep the original model for hospital A and use the fine-tuned model for hospital B, and so on for hospitals C and D. However, not only is this approach impractical, but it also presents a daunting level of regulatory hurdles, according to Shashikumar. Having to deal with a growing number of different models, each of which must meet FDA evaluation and regulation, is simply not scalable.

WUPERR, however, tested a different solution using historical hospital data — a technique called "elastic weight consolidation". This approach echoes a concept found in cognitive neuroscience, according to Shashikumar.

"There are a bunch of neurons in your brain that are trained in the tasks you’ve learned,” he explains. “When you learn a new, similar task, you build on your previous experience — but you don't interfere with those neurons. Instead, you teach additional neurons the nuances of the new task."

With this approach — but with neurons replaced by adjustable model parameters — the team was able to maintain high accuracy in their sepsis predictions across the board with every new hospital added to the pool. By the end, the very accurate sepsis predictions for four hospitals were successfully produced by one model — an important advance.

Related content
Learning the complete quantile function, which maps probabilities to variable values, rather than building separate models for each quantile level, enables better optimization of resource trade-offs.

You may now wonder: How could this model share fiercely protected patient data between separate hospitals? This is the second hurdle that WUPERR overcame, using a technique called “episodic representation replay.” In simple terms, this means that when the model was trained on hospital A's patient data, that data is passed through a neural network that strips away all patient identifiers and creates a representation of the data that is safe to share. The representations of the data are then shown to the model while training at the next hospital.

"I believe this was the first application of sharing neural-network representations from an older hospital with a new hospital in the context of sepsis prediction," says Shashikumar.

The result of all this is a single, manageable model that can generalize across a whole set of hospitals, with all the institutions involved benefiting from each other's patient data while never actually having access to it.

“There is beauty in generalizable knowledge and generalizable models, like a unified theory of everything,” says Nemati.

Things get real

Today the latest iteration of WUPERR is in live action in the ED of a UC San Diego Health hospital, providing clinicians with early warnings about patients predicted to develop sepsis in the next four hours. This version of WUPERR has also been augmented with, among other things, a statistical model that monitors its input data for quality, helping to reduce false alarms.

Related content
With the support of an Amazon Research Award, Papoian’s team is deciphering the dynamics of intrinsically disordered proteins.

That’s important because false alarms are a big problem in sepsis detection. The hospital’s previous, less sophisticated system had a high rate of false alarms. Working with clinicians at the hospital, Shashikumar and his colleagues were able to tune WUPERR to predict 60% of all sepsis events. In the closely monitored environment of the ED, clinicians are expected to catch some portion of the sepsis cases with obvious signs and symptoms, and WUPERR provides a second pair of eyes to provide earlier warning and potentially catch additional cases of sepsis. What is critical to the clinicians is that false alarms, and the burdens they entail, remain low. While about half of WUPERR’s predictions were false alarms, that rate is relatively low, given the seriousness of sepsis.

Missed detections are also of great concern and are often attributable to patient complexity, inadequate monitoring, and low availability of data. Here, the team is applying active sensing to make timely recommendations for collecting sepsis-specific biomarkers in high-risk patients. The latest generation of the system combines false-alarm reduction with active sensing to achieve state-of-the-art performance.

The system has been in place for four months, with data collection ongoing. The clinicians in the ED have reported that, on average, the alarm is going off an hour or two earlier than when the doctors would have started to suspect an infection.

“They’re happy with that performance, particularly the lower false-alarm rate. It’s a very good validation of our work,” says Shashikumar. “But we still have a long way to go. In time, we want to extend this to other hospitals, intensive-care units, and hospital wards across the US and the world.”

The scaling up of this life-saving service is made easier by the fact that WUPERR is entirely cloud-based and hosted on Amazon Web Services.

Related content
New method goes beyond Granger causality to identify only the true causes of a target time series, given some graph constraints.

“Using AWS services has been great for us," says Shashikumar. "Our sepsis software is running in real time in the hospital lab, and that’s mission-critical — it has to be up and running 100% of the time, without fail.” The team makes use of a wide range of AWS services, including autoscaling, load balancing, fault tolerance, and CloudWatch alarms.

Deploying the model in different locations is also greatly simplified. AWS provides HIPAA-compliant infrastructure, which is legally required to protect private health data transmitted to the cloud.

In fact, when the Nemati Lab moved to UC San Diego, they had to decide whether to buy their own in-house servers or move to the cloud. They moved the entirety of their computing services to AWS. “It has been super convenient,” says Shashikumar.

Last year, Nemati's team, including Shashikumar, co-founded Healcisio, a startup, as part of an effort to commercialize their model and ultimately receive FDA clearance, which will be essential for deploying the system to multiple hospitals in the US and abroad.

Meanwhile, they have great ambitions to improve the model. For now, it is limited to the time series data in EHRs. But the team’s current focus is on multimodal data, including wearable sensors, clinical notes, imaging, and more. They want their model to see everything a clinician has access to when they treat patients — all the contextual information — and additionally address “data deserts” via continuous monitoring of patients and active sensing.

Increasing the sensitivity of the model and reducing its false-alarm rate even further is the ultimate goal.

“At the end of the day, our focus is on building a model that can save as many lives as possible,” Shashikumar said. “I didn't get into healthcare out of passion, but it has become my passion.”

Research areas

Related content

US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
CA, ON, Toronto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the next level. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, MA, Boston
As a Principal Scientist within the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team The AGI team has a mission to push the envelope with multimodal LLMs and Gen AI in Computer Vision, in order to provide the best-possible experience for our customers.
US, CA, Palo Alto
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. Key job responsibilities As an Applied Science Manager, you will: * Directly manage and lead a cross-functional team of Applied Scientists, Machine Learning Engineers, and Software Development Engineers. * Develop science and engineering roadmaps for SPB ads response prediction with ML and Gen AI solutions, run annual planning, and foster cross-team collaboration on model development and integration to advertising applications. * Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. * Stay informed about recent scientific publications, industrial research trends, and system designs that are pertinent to the SPB advertising business and bring those insights with the team. About the team The Ad Response Prediction team within Sponsored Products and Brands (SPB) drives personalized shopping experiences for SPB Ads across placements, pages, and devices worldwide. We achieve this through ML and GenAI solutions that include customized shopper response prediction and session-level understanding to optimize every stage of the ad-serving process, from sourcing and bidding to widget discovery and auctions. Our responsibilities include advancing response prediction through model and feature innovations and extending prediction beyond the auction stage to areas such as targeting, sourcing, and bidding. We are seeking an Applied Science Manager with a strong background in ML and Gen AI solutions. The ideal candidate shall have experience managing both scientists and engineers and will be passionate about applying these technologies to the advertising domain.
GB, Cambridge
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to advance the state-of-the-art in developing efficient multimodal language models across our product portfolio. Through close hardware-software integration, we design and train models for resource efficiency across the hardware and software tech stack. The Silicon and Solutions Group Edge AI team is looking for a talented Sr. Applied Scientist who will lead our efforts on inventing evaluation methods for multimodal language models and agents for new devices, including audio and vision experiences. Key job responsibilities - Collaborate with cross-functional engineers and scientists to advance the state of the art in multimodal model evaluations for devices, including audio, images, and videos - Invent and validate reliability for novel automated evaluation methods for perception tasks, such as fine-tuned LLM-as-judge - Develop and extend our evaluation framework(s) to support expanding capabilities for multimodal language models - Analyze large offline and online datasets to understand model gaps, develop methods to interpret model failures, and collaborate with training teams to enhance model capabilities for product use cases - Work closely with scientists, compiler engineers, data collection, and product teams to advance evaluation methods - Mentor less experienced Applied Scientists A day in the life As a Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to innovative methods for evaluating new product experiences and discover ways to enhance our model capabilities and enrich our customer experiences. You'll research new methods for reliably assessing perception capabilities for audio-visual tasks in multimodal language models, design and implement new metrics, and develop our evaluation framework. You'll collaborate across teams of engineers and scientists to identify and root cause issues in models and their system integration to continuously enhance the end-to-end experience. About the team Our Edge AI science team brings together our unique skills and experiences to deliver state-of-the-art multimodal AI models that enable new experiences on Amazon devices. We work at the intersection of hardware, software, and science to build models designed for our custom silicon.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with generative AI (GenAI) and multi-modal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to develop algorithms and modeling techniques to advance the state of the art with multi-modal systems. Your work will directly impact our customers in the form of products and services that make use of vision and language technology. You will leverage Amazon’s large-scale computing resources to accelerate development with multi-modal Large Language Models (LLMs) and GenAI in Computer Vision. About the team The AGI team has a mission to push the envelope with multimodal LLMs and GenAI in Computer Vision, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the limits. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. As an Applied Scientist on our team, you will focus on building state-of-the-art ML models for healthcare. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the forefront of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with other teams. This role offers a unique opportunity to work on projects that could fundamentally transform healthcare outcomes. Key job responsibilities In this role, you will: • Design and implement novel AI/ML solutions for complex healthcare challenges • Drive advancements in machine learning and data science • Balance theoretical knowledge with practical implementation • Work closely with customers and partners to understand their requirements • Navigate ambiguity and create clarity in early-stage product development • Collaborate with cross-functional teams while fostering innovation in a collaborative work environment to deliver impactful solutions • Establish best practices for ML experimentation, evaluation, development and deployment • Partner with leadership to define roadmap and strategic initiatives You’ll need a strong background in AI/ML, proven leadership skills, and the ability to translate complex concepts into actionable plans. You’ll also need to effectively translate research findings into practical solutions. A day in the life You will solve real-world problems by getting and analyzing large amounts of data, generate insights and opportunities, design simulations and experiments, and develop statistical and ML models. The team is driven by business needs, which requires collaboration with other Scientists, Engineers, and Product Managers across the Special Projects organization. You will prepare written and verbal presentations to share insights to audiences of varying levels of technical sophistication. About the team We represent Amazon's ambitious vision to solve the world's most pressing challenges. We are exploring new approaches to enhance research practices in the healthcare space, leveraging Amazon's scale and technological expertise. We operate with the agility of a startup while backed by Amazon's resources and operational excellence. We're looking for builders who are excited about working on ambitious, undefined problems and are comfortable with ambiguity.
US, WA, Seattle
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.