New take on hierarchical time series forecasting improves accuracy

Method enforces “coherence” of hierarchical time series, in which the values at each level of the hierarchy are sums of the values at the level below.

Time series forecasting is often hierarchical: a utility company might, for instance, want to forecast energy consumption or supply at regional, state, and national levels; a retailer may want to forecast sales according to increasingly general product features, such as color, model, brand, product category, and so on. 

Previously, the state-of-the-art approach in hierarchical time series forecasting was to learn a separate, local model for each time series in the hierarchy and then apply some postprocessing to reconcile the different levels — to ensure that the sales figure for a certain brand of camera is the sum of the sales figures for the different camera models within that brand, and so on.

This approach has two main drawbacks. It doesn’t allow different levels of the hierarchy to benefit from each other’s forecasts: at lower levels, historical data often has characteristics such as sparsity or burstiness that can be “aggregated away” at higher levels. And the reconciliation procedure, which is geared to the average case, can flatten out nonlinearities that are highly predictive in particular cases.

Coherence projection.gif
The researchers' method enforces coherence, or agreement among different levels of a hierarchical time series, through projection. The plane (S) is the subspace of coherent samples; yt+h is a sample from the standard distribution (which is always coherent); ŷt+h is the transformation of the sample into a sample from a learned distribution; and t+h is the projection of ŷt+h back into the coherent subspace.

In a paper we’re presenting at the International Conference on Machine Learning (ICML), we describe a new approach to hierarchical time series forecasting that uses a single machine learning model, trained end to end, to simultaneously predict outputs at every level of the hierarchy and to reconcile them. Contrary to all but one approach from the literature, our approach also allows for probabilistic forecasts — as opposed to single-value (point) forecasts — which are crucial for intelligent downstream decision making. 

In tests, we compared our approach to nine previous models on five different datasets. On four of the datasets, our model outperformed all nine baselines, with reductions in error rate ranging from 6% to 19% relative to the second-best performer (which varied from case to case).

One baseline model had an 8% lower error rate than ours on one dataset, but that same baseline’s methodology means that it didn’t work on another dataset at all. And on the other three datasets, our model had an advantage that ranged from 13% to 44%.

Ensuring trainability

Our model has two main components. The first is neural network that takes a hierarchical time series as input and outputs a probabilistic forecast for each level of the hierarchy. Probabilistic forecasts enable more intelligent decision making because they allow us to minimize a notion of expected future costs.

The second component of our model selects a sample from that distribution and ensures its coherence — that is, it ensures that the values at each level of the hierarchy are sums of the values of the levels below.

One technical challenge in designing an end-to-end hierarchical forecasting model is ensuring trainability via standard methods. Stochastic gradient descent — the learning algorithm for most neural networks — requires differentiable functions; however, in our model, the reconciliation step requires sampling from a probability distribution. This is not ordinarily a differentiable function, but we make it one by using the reparameterization trick.

The distribution output by our model’s first component is characterized by a set of parameters; in a normal (Gaussian) distribution, those parameters are mean and variance. Instead of sampling directly from that distribution, we sample from the standard distribution: in the Gaussian case, that’s the distribution with a mean of 0 and a variance of 1.

We can convert a sample from the standard distribution into a sample from the learned distribution with a function whose coefficients are the parameters of the learned distribution. Here’s the equation for the Gaussian case, where m and S are the mean and variance, respectively, of the learned distribution, and z is the sample from the standard distribution:

Distribution equation.png

With this trick, we move the randomness (the sampling procedure) outside the neural network; given z, the above function is deterministic and differentiable. This allows us to incorporate the sampling step into our end-to-end network. While we’ve used the Gaussian distribution as an example, the reparametrization trick works for a wider class of distributions.

We incorporate the reconciliation step into our network by recasting it as an optimization problem, which we solve as a subroutine of our model’s overall parameter learning. In our model, we represent the hierarchical relationship between time series as a matrix.

Hierarchy matrix.png
At left is a hierarchy and at right the matrix that defines it. The columns of the matrix correspond to the entries at the lowest level of the hierarchy (the b’s of the leaf nodes), and the first three rows indicate levels of the hierarchy (summing the b’s, as encoded by the first row of the matrix, leads to y.)

In the space of possible samples from the learned distribution, the hierarchy matrix defines a subspace of samples that meet the hierarchical constraint. After transforming our standard-distribution sample into a sample from our learned distribution, we project it back down to the subspace defined by the hierarchy matrix (see animation, above).

Enforcing the coherence constraint thus becomes a matter of minimizing the distance between the transformed sample and its projection, an optimization problem that we can readily solve as part of the overall parameter learning.

Full architecture.png
The complete architecture of our end-to-end architecture for predicting hierarchical time series.

In principle, enforcing coherence could lower the accuracy of the model’s predictions. But in practice, the coherence constraint appears to improve the model’s accuracy: it enforces the sharing of information across the hierarchy, and forecasting at higher levels of the hierarchy is often easier. Because of this sharing, we see consistent improvement in accuracy at the lowest level of the hierarchy.

In our experiments, we used a DeepVAR network for time series prediction and solved the reconciliation problem in closed form. But our approach is more general and can be used with many state-of-the-art neural forecasting networks, prediction distributions, projection methods, or loss functions, making it adaptable to a wide range of use cases.

Research areas

Related content

US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. The Research Science team at Amazon Robotics is seeking interns with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects, including allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, and learning how to grasp all the products Amazon sells. We are seeking internship candidates with backgrounds in computer vision, machine learning, resource allocation, discrete optimization, search, planning/scheduling, and reinforcement learning. As an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000