Garegin Papoian, the Monroe Martin Professor at the University of Maryland, is seen sitting at a desk with an open laptop in front of him. He has turned around in his seat to face the camera.
Garegin Papoian is the Monroe Martin Professor at the University of Maryland. Within his Papoian Lab, a theoretical physical chemistry group located at the university, his team is working toward developing fundamental molecular models of the whole cell, a concept still in its infancy
Courtesy of Garegin Papoian

Garegin Papoian’s quest to model an elusive class of proteins

With the support of an Amazon Research Award, Papoian’s team is deciphering the dynamics of intrinsically disordered proteins.

How do molecules come together and start to behave like a living system? This is the type of question that drives Garegin Papoian’s research. At the University of Maryland, where he is the Monroe Martin Professor, he has been focusing on computational modeling of biological molecules like proteins and DNA. Within his Papoian Lab, a theoretical physical chemistry group also located at the university, his team is also working toward developing fundamental molecular models of the whole cell, a concept still in its infancy.

Papoian’s path into science was determined early on. Growing up in Armenia, then a part of the Soviet Union, he went to a special school of physics and mathematics, where he was introduced to Science Olympiads. While in high school, he won the first place in the Republic of Armenia in separate Olympiads in chemistry, physics, mathematics and biology. “Science Olympiads were a big reason why I got drawn into science, in particular to chemistry and physics”, he says.

Because of his success in the competitions, he was invited to study at an advanced chemistry college in Moscow established specifically for Olympiad winners.

“I was 16,” he says, “but it was assumed that we already knew all university level chemistry. So, they would start immediately with a very high-level training.” The program included an internship in the United States, at the University of Kansas. From there he eventually enrolled as a graduate student at Cornell University, where he pursued his PhD in quantum chemistry, working under the Nobel Laureate, Roald Hoffmann.

During his postdoc, he turned to classical physics with a particular emphasis on biophysics. “I was interested in bringing concepts of physical chemistry to understand biological phenomena from the molecular perspective,” he says. “And my long-term career goal is to develop concepts both for proteins and cells.”

Predicting a protein’s shape

A protein is a large molecule essential to all living things. The sequence of amino acids that form a protein determines its three-dimensional structure. Each protein has a unique shape that dictates its function. Being able to predict what a protein structure looks like from its amino acid sequence has been a long-standing scientific challenge and one of the research interests of Papoian’s group, for which he received an AWS Machine Learning Research Award in 2018.

This animation shows the structure of a protein called linker histone H1
This animation shows the structure of a protein called linker histone H1, including its disordered tails, predicted by Papoian's team. "We discovered that interactions of those disordered tails with DNA help to structurally position H1 with respect to the nucleosome. In terms of the bigger picture, the H1-nucleosome interactions regulate epigenetic processes, determining for example which particular genes should be turned on or off,” says Papoian.

One of the applications of protein structure prediction is drug design. “When you design a drug, you need to know what the target looks like,” says Papoian. If you know that the target protein has a certain pocket, for example, you can develop a molecule that will fit nicely into that pocket. While identifying genes associated with diseases has become easier, the sequence of a gene doesn’t tell you what the protein expressed by it looks like, and experimental methods to determine the protein shape are lengthy and expensive.

IDPs ... are more like this crazy spaghetti. It's very hard to deal with them both experimentally and computationally.
Garegin Papoian

Even in the wake of DeepMind demonstrating that AlphaFold is capable of predicting protein structures with an unprecedented level of accuracy, challenges still remain.

It turns out that a large proportion of human proteins are not completely structured in neat three-dimensional shapes. These are called the intrinsically disordered proteins (IDPs). “They are much more dynamic and mostly never fall into a single structure,” says Papoian. “They are more like this crazy spaghetti. It's very hard to deal with them both experimentally and computationally because they are so elusive.” He notes that about a third of human proteins are like that, including many important disease-causing proteins.

Papoian’s AWS Machine Learning Research Award enabled his team to advance the development of a system that is better suited to simulating these proteins.

Tackling disordered proteins

For the past few years, Papoian Lab has been working with a protein modeling framework called AWSEM-MD (pronounces “awesome”), which stands for associative memory, water-mediated, structure and energy model — molecular dynamics. It has been developed jointly with Peter Wolynes, Papoian’s former postdoctoral advisor who is currently at Rice University and with whom he continued to collaborate over the years.

Using the AWS Machine Learning Research Award, Papoian and his colleagues developed AWSEM-IDP, an AWSEM branch specifically designed to simulate intrinsically disordered proteins.

This system uses a database of protein fragment structures obtained experimentally, for example, through nuclear magnetic resonance (NMR) spectroscopy — a technique that determines the structure and dynamics of proteins. "These fragments serve as structural memories that guide the IDP to undergo structural transformations that are informed by the experiment,” Papoian explains. “This allows simulating more realistic IDP dynamics.”

The fragment database may also contain structures from atomistic simulations — a type of simulation where every atom of a protein is present. “The reason why we prefer not to do those in general is that they’re very expensive, so we cannot do very big simulations. But we can do atomistic simulations of short fragments to give us good fragment memories, again improving the accuracy of IDP’s structural exploration in AWSEM simulations,” he says.

An IDP will prefer multiple structures, not just one.

“That's the key difference from regular proteins: IDPs are multi-faceted in essence. But they still prefer certain structures over others. And the AWSEM-IDP model allows you to correctly describe those preferences,” Papoian explained. This model was described in a 2018 article published at the Journal of Physical Chemistry B.

In another work published earlier this year that was supported by the AWS Machine Learning Award, Papoian and his colleagues applied AWSEM-IDP to study a protein called linker histone H1, which plays an essential role in regulating many important biological processes. This protein has two intrinsically disordered regions, parts of its structure that are not well folded and resemble two tails. Because they are disordered, it’s much harder to understand what they do and how they interact.

Proteins like linker histone H1 regulate histone complexes, which act like a spool around which the DNA wraps to create structures called nucleosomes. “In this paper, we used AWSEM-IDP to model the nucleosome with linker histone H1, in particular with these disordered tails. And that allowed us to understand how the linker histone and the nucleosome come together and interact, and what's the role of these disordered tails,” says Papoian. Understanding proteins’ interactions with nucleosomes may give important insights on epigenetics, which is one of Papoian Lab’s interests.

Future challenges

Because making sense of IDPs is such a difficult process, Papoian says that AWSEM-IDP is an ongoing program with room for improvement. “What we have currently works better in some classes of proteins, and not so much in others. So next we’ll explore what are the challenges for what we currently have in ASWEM-IDP and try to come up with new advances to overcome them.”

In addition to IDPs, Papoian Lab will also continue to pursue the use of deep learning for structure prediction of well-folded proteins. Although there is some conceptual overlap with AlphaFold, Papoian believes that AWSEM-MD is a powerful tool and has advantages to other approaches when it comes to molecular dynamics.

Proteins are not frozen objects. Some of them are well structured, but many are not structured at all, and they are dynamic and move and shape-shift incessantly.
Garegin Papoian

“Proteins are not frozen objects,” he says. “Some of them are well structured, but many are not structured at all, and they are dynamic and move and shape-shift incessantly. So, to understand how these proteins function, you must model their dynamics and that’s what AWSEM-MD can do best.”

Papoian thinks one exciting area to be explored in coming decades will be combining machine learning and physics to work on protein structure prediction, protein dynamics, multiprotein complexes, and epigenetics.

“There are lots of things that still remain to be understood in our models. And I think that probably neither physics nor machine learning by themselves can tackle them. But a program that brings them together in a productive way can be very powerful,” he said.

Modeling an entire cell

Another ambitious project that Papoian and his colleagues are pursuing is to develop a computational model of an entire cell. “We still don’t have a blueprint of a cell the way we have a blueprint of a car or a Boeing airplane.”

To do that, his group develops their own software from scratch.

Garegin Papoian: How do cells move? Chemistry meets mechanics

“We basically do the science, the physics, and biophysics of what is needed to model our cells. We derive the needed algorithms from scratch based on the laws of physics and chemistry and then we program that into a computer and run simulations on a supercomputer,” he explained. This has to be done at a single molecule resolution, he adds, meaning that they have to track every single molecule within a cell.

To achieve that, the Papoian Lab developed a model called MEDYAN.

“We can already model some number of proteins, the membrane, we can model rich chemistry. We have developed some of the fundamental chemistry and physics components of what needs to be done,” he says. The next step is to scale it. “We usually do simulations with several types of proteins. So instead of several, you will need maybe hundreds or thousands of different types of proteins, so it just brings more complexity.”

When that happens, it will be a huge revolution in biomedicine, he says. “Then lots of things that people laboriously spend years doing in the laboratory could just run on AWS servers. And you could do your experiments and search for treatments computationally, which would be much cheaper and faster.”

Research areas

Related content

GB, London
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of GenAI algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in GenAI. About the team The AGI team has a mission to push the envelope with GenAI in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer. Throughout your internship journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied science, where your contributions will shape the future of Quantum Computing and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available for Quantum Research Science and Applied Science Internships in Santa Clara, CA and Pasadena, CA. We are particularly interested in candidates with expertise in any of the following areas: superconducting qubits, cavity/circuit QED, quantum optics, open quantum systems, superconductivity, electromagnetic simulations of superconducting circuits, microwave engineering, benchmarking, quantum error correction, etc. In this role, you will work alongside global experts to develop and implement novel, scalable solutions that advance the state-of-the-art in the areas of quantum computing. You will tackle challenging, groundbreaking research problems, work with leading edge technology, focus on highly targeted customer use-cases, and launch products that solve problems for Amazon customers. The ideal candidate should possess the ability to work collaboratively with diverse groups and cross-functional teams to solve complex business problems. A successful candidate will be a self-starter, comfortable with ambiguity, with strong attention to detail and the ability to thrive in a fast-paced, ever-changing environment. About the team Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. - We are pioneering the development of robotics dexterous hands that: - Enable unprecedented generalization across diverse tasks - Are compliant but at the same time impact resistant - Can enable power grasps with the same reliability as fine dexterity and nonprehensile manipulation - Can naturally cope with the uncertainty of the environment - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement novel highly dexterous and reliable robotic dexterous hand morphologies - Develop parallel paths for rapid finger design and prototyping combining different actuation and sensing technologies as well as different finger morphologies - Develop new testing and validation strategies to support fast continuous integration and modularity - Build and test full hand prototypes to validate the performance of the solution - Create hybrid approaches combining different actuation technologies, under-actuation, active and passive compliance - Hand integration into rest of the embodiment - Partner with cross-functional teams to rapidly create new concepts and prototypes - Work with Amazon's robotics engineering and operations teams to grasp their requirements and develop tailored solutions - Document the designs, performance, and validation of the final system
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
GB, London
Are you a MS or PhD student interested in a 2026 Research Science Internship, where you would be using your experience to initiate the design, development, execution and implementation of scientific research projects? If so, we want to hear from you! Is your research in machine learning, deep learning, automated reasoning, speech, robotics, computer vision, optimization, or quantum computing? If so, we want to hear from you! We are looking for motivated students with research interests in a variety of science domains to build state-of-the-art solutions for never before solved problems You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Research Science Intern, you will have following key job responsibilities; • Work closely with scientists and engineering teams (position-dependent) • Work on an interdisciplinary team on customer-obsessed research • Design new algorithms, models, or other technical solutions • Experience Amazon's customer-focused culture A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain, UAE, and UK). Please note these are not remote internships.
IT, Turin
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models, speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
US, WA, Redmond
Amazon Leo is Amazon’s low Earth orbit satellite broadband network. Its mission is to deliver fast, reliable internet to customers and communities around the world, and we’ve designed the system with the capacity, flexibility, and performance to serve a wide range of customers, from individual households to schools, hospitals, businesses, government agencies, and other organizations operating in locations without reliable connectivity. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum. We are searching for a senior manager with expertise in the spaceflight aerospace engineering domain of Flight Dynamics, including Mission Design of LEO Constellations, Trajectory, Maneuver Planning, and Navigation. This role will be responsible for the research and development of core spaceflight algorithms that enable the Amazon Leo mission. This role will manage the team responsible for designing and developing flight dynamics innovations for evolving constellation mission needs. Key job responsibilities This position requires expertise in simulation and analysis of astrodynamics models and spaceflight trajectories. This position requires demonstrated achievement in managing technology research portfolios. A strong candidate will have demonstrated achievement in managing spaceflight engineering Guidance, Navigation, and Control teams for full mission lifecycle including design, prototype development and deployment, and operations. Working with the Leo Flight Dynamics Research Science team, you will manage, guide, and direct staff to: • Implement high fidelity modeling techniques for analysis and simulation of large constellation concepts. • Develop algorithms for station-keeping and constellation maintenance. • Perform analysis in support of multi-disciplinary trades within the Amazon Leo team. • Formulate solutions to address collision avoidance and conjunction assessment challenges. • Develop the Leo ground system’s evolving Flight Dynamics System functional requirements. • Work closely with GNC engineers to manage on-orbit performance and develop flight dynamics operations processes About the team The Flight Dynamics Research Science team is staffed with subject matter experts of various areas within the Flight Dynamics domain. It also includes a growing Position, Navigation, and Timing (PNT) team.
LU, Luxembourg
Are you a MS student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for a customer obsessed Data Scientist Intern who can innovate in a business environment, building and deploying machine learning models to drive step-change innovation and scale it to the EU/worldwide. If this describes you, come and join our Data Science teams at Amazon for an exciting internship opportunity. If you are insatiably curious and always want to learn more, then you’ve come to the right place. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science Key job responsibilities As a Data Science Intern, you will have following key job responsibilities: • Work closely with scientists and engineers to architect and develop new algorithms to implement scientific solutions for Amazon problems. • Work on an interdisciplinary team on customer-obsessed research • Experience Amazon's customer-focused culture • Create and Deliver Machine Learning projects that can be quickly applied starting locally and scaled to EU/worldwide • Build and deploy Machine Learning models using large data-sets and cloud technology. • Create and share with audiences of varying levels technical papers and presentations • Define metrics and design algorithms to estimate customer satisfaction and engagement A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, France, Germany, Ireland, Israel, Italy, Luxembourg, Netherlands, Poland, Romania, Spain and the UK). Please note these are not remote internships.