Garegin Papoian, the Monroe Martin Professor at the University of Maryland, is seen sitting at a desk with an open laptop in front of him. He has turned around in his seat to face the camera.
Garegin Papoian is the Monroe Martin Professor at the University of Maryland. Within his Papoian Lab, a theoretical physical chemistry group located at the university, his team is working toward developing fundamental molecular models of the whole cell, a concept still in its infancy
Courtesy of Garegin Papoian

Garegin Papoian’s quest to model an elusive class of proteins

With the support of an Amazon Research Award, Papoian’s team is deciphering the dynamics of intrinsically disordered proteins.

How do molecules come together and start to behave like a living system? This is the type of question that drives Garegin Papoian’s research. At the University of Maryland, where he is the Monroe Martin Professor, he has been focusing on computational modeling of biological molecules like proteins and DNA. Within his Papoian Lab, a theoretical physical chemistry group also located at the university, his team is also working toward developing fundamental molecular models of the whole cell, a concept still in its infancy.

Papoian’s path into science was determined early on. Growing up in Armenia, then a part of the Soviet Union, he went to a special school of physics and mathematics, where he was introduced to Science Olympiads. While in high school, he won the first place in the Republic of Armenia in separate Olympiads in chemistry, physics, mathematics and biology. “Science Olympiads were a big reason why I got drawn into science, in particular to chemistry and physics”, he says.

Because of his success in the competitions, he was invited to study at an advanced chemistry college in Moscow established specifically for Olympiad winners.

“I was 16,” he says, “but it was assumed that we already knew all university level chemistry. So, they would start immediately with a very high-level training.” The program included an internship in the United States, at the University of Kansas. From there he eventually enrolled as a graduate student at Cornell University, where he pursued his PhD in quantum chemistry, working under the Nobel Laureate, Roald Hoffmann.

During his postdoc, he turned to classical physics with a particular emphasis on biophysics. “I was interested in bringing concepts of physical chemistry to understand biological phenomena from the molecular perspective,” he says. “And my long-term career goal is to develop concepts both for proteins and cells.”

Predicting a protein’s shape

A protein is a large molecule essential to all living things. The sequence of amino acids that form a protein determines its three-dimensional structure. Each protein has a unique shape that dictates its function. Being able to predict what a protein structure looks like from its amino acid sequence has been a long-standing scientific challenge and one of the research interests of Papoian’s group, for which he received an AWS Machine Learning Research Award in 2018.

This animation shows the structure of a protein called linker histone H1
This animation shows the structure of a protein called linker histone H1, including its disordered tails, predicted by Papoian's team. "We discovered that interactions of those disordered tails with DNA help to structurally position H1 with respect to the nucleosome. In terms of the bigger picture, the H1-nucleosome interactions regulate epigenetic processes, determining for example which particular genes should be turned on or off,” says Papoian.

One of the applications of protein structure prediction is drug design. “When you design a drug, you need to know what the target looks like,” says Papoian. If you know that the target protein has a certain pocket, for example, you can develop a molecule that will fit nicely into that pocket. While identifying genes associated with diseases has become easier, the sequence of a gene doesn’t tell you what the protein expressed by it looks like, and experimental methods to determine the protein shape are lengthy and expensive.

IDPs ... are more like this crazy spaghetti. It's very hard to deal with them both experimentally and computationally.
Garegin Papoian

Even in the wake of DeepMind demonstrating that AlphaFold is capable of predicting protein structures with an unprecedented level of accuracy, challenges still remain.

It turns out that a large proportion of human proteins are not completely structured in neat three-dimensional shapes. These are called the intrinsically disordered proteins (IDPs). “They are much more dynamic and mostly never fall into a single structure,” says Papoian. “They are more like this crazy spaghetti. It's very hard to deal with them both experimentally and computationally because they are so elusive.” He notes that about a third of human proteins are like that, including many important disease-causing proteins.

Papoian’s AWS Machine Learning Research Award enabled his team to advance the development of a system that is better suited to simulating these proteins.

Tackling disordered proteins

For the past few years, Papoian Lab has been working with a protein modeling framework called AWSEM-MD (pronounces “awesome”), which stands for associative memory, water-mediated, structure and energy model — molecular dynamics. It has been developed jointly with Peter Wolynes, Papoian’s former postdoctoral advisor who is currently at Rice University and with whom he continued to collaborate over the years.

Using the AWS Machine Learning Research Award, Papoian and his colleagues developed AWSEM-IDP, an AWSEM branch specifically designed to simulate intrinsically disordered proteins.

This system uses a database of protein fragment structures obtained experimentally, for example, through nuclear magnetic resonance (NMR) spectroscopy — a technique that determines the structure and dynamics of proteins. "These fragments serve as structural memories that guide the IDP to undergo structural transformations that are informed by the experiment,” Papoian explains. “This allows simulating more realistic IDP dynamics.”

The fragment database may also contain structures from atomistic simulations — a type of simulation where every atom of a protein is present. “The reason why we prefer not to do those in general is that they’re very expensive, so we cannot do very big simulations. But we can do atomistic simulations of short fragments to give us good fragment memories, again improving the accuracy of IDP’s structural exploration in AWSEM simulations,” he says.

An IDP will prefer multiple structures, not just one.

“That's the key difference from regular proteins: IDPs are multi-faceted in essence. But they still prefer certain structures over others. And the AWSEM-IDP model allows you to correctly describe those preferences,” Papoian explained. This model was described in a 2018 article published at the Journal of Physical Chemistry B.

In another work published earlier this year that was supported by the AWS Machine Learning Award, Papoian and his colleagues applied AWSEM-IDP to study a protein called linker histone H1, which plays an essential role in regulating many important biological processes. This protein has two intrinsically disordered regions, parts of its structure that are not well folded and resemble two tails. Because they are disordered, it’s much harder to understand what they do and how they interact.

Proteins like linker histone H1 regulate histone complexes, which act like a spool around which the DNA wraps to create structures called nucleosomes. “In this paper, we used AWSEM-IDP to model the nucleosome with linker histone H1, in particular with these disordered tails. And that allowed us to understand how the linker histone and the nucleosome come together and interact, and what's the role of these disordered tails,” says Papoian. Understanding proteins’ interactions with nucleosomes may give important insights on epigenetics, which is one of Papoian Lab’s interests.

Future challenges

Because making sense of IDPs is such a difficult process, Papoian says that AWSEM-IDP is an ongoing program with room for improvement. “What we have currently works better in some classes of proteins, and not so much in others. So next we’ll explore what are the challenges for what we currently have in ASWEM-IDP and try to come up with new advances to overcome them.”

In addition to IDPs, Papoian Lab will also continue to pursue the use of deep learning for structure prediction of well-folded proteins. Although there is some conceptual overlap with AlphaFold, Papoian believes that AWSEM-MD is a powerful tool and has advantages to other approaches when it comes to molecular dynamics.

Proteins are not frozen objects. Some of them are well structured, but many are not structured at all, and they are dynamic and move and shape-shift incessantly.
Garegin Papoian

“Proteins are not frozen objects,” he says. “Some of them are well structured, but many are not structured at all, and they are dynamic and move and shape-shift incessantly. So, to understand how these proteins function, you must model their dynamics and that’s what AWSEM-MD can do best.”

Papoian thinks one exciting area to be explored in coming decades will be combining machine learning and physics to work on protein structure prediction, protein dynamics, multiprotein complexes, and epigenetics.

“There are lots of things that still remain to be understood in our models. And I think that probably neither physics nor machine learning by themselves can tackle them. But a program that brings them together in a productive way can be very powerful,” he said.

Modeling an entire cell

Another ambitious project that Papoian and his colleagues are pursuing is to develop a computational model of an entire cell. “We still don’t have a blueprint of a cell the way we have a blueprint of a car or a Boeing airplane.”

To do that, his group develops their own software from scratch.

Garegin Papoian: How do cells move? Chemistry meets mechanics

“We basically do the science, the physics, and biophysics of what is needed to model our cells. We derive the needed algorithms from scratch based on the laws of physics and chemistry and then we program that into a computer and run simulations on a supercomputer,” he explained. This has to be done at a single molecule resolution, he adds, meaning that they have to track every single molecule within a cell.

To achieve that, the Papoian Lab developed a model called MEDYAN.

“We can already model some number of proteins, the membrane, we can model rich chemistry. We have developed some of the fundamental chemistry and physics components of what needs to be done,” he says. The next step is to scale it. “We usually do simulations with several types of proteins. So instead of several, you will need maybe hundreds or thousands of different types of proteins, so it just brings more complexity.”

When that happens, it will be a huge revolution in biomedicine, he says. “Then lots of things that people laboriously spend years doing in the laboratory could just run on AWS servers. And you could do your experiments and search for treatments computationally, which would be much cheaper and faster.”

Research areas

Related content

CA, ON, Toronto
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve associate, employee and manager experiences at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science! The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. Key job responsibilities As an Applied Scientist for People Experience and Technology (PXT) Central Science, you will be working with our science and engineering teams, specifically on re-imagining Generative AI Applications and Generative AI Infrastructure for HR. Applying Generative AI to HR has unique challenges such as privacy, fairness, and seamlessly integrating Enterprise Knowledge and World Knowledge and knowing which to use when. In addition, the team works on some of Amazon’s most strategic technical investments in the people space and support Amazon’s efforts to be Earth’s Best Employer. In this role you will have a significant impact on 1.5 million Amazonians and the communities Amazon serves and ample scope to demonstrate scientific thought leadership and scientific impact in addition to business impact. You will also play a critical role in the organization's business planning, work closely with senior leaders to develop goals and resource requirements, influence our long-term technical and business strategy, and help hire and develop science and engineering talent. You will also provide support to business partners, helping them use the best scientific methods and science-driven tools to solve current and upcoming challenges and deliver efficiency gains in a changing marke About the team The AI/ML team in PXTCS is working on building Generative AI solutions to reimagine Corp employee and Ops associate experience. Examples of state-of-the-art solutions are Coaching for Amazon employees (available on AZA) and reinventing Employee Recruiting and Employee Listening.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
CA, ON, Toronto
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As an Applied Scientist, you will leverage your technical expertise and experience to collaborate with other talented applied scientists and engineers to research and develop novel algorithms and modeling techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering and Optimization, Supervised Fine-Tuning, Learning from Human Feedback, Evaluation, Self-Learning, etc. Your work will directly impact our customers in the form of novel products and services.
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The XCM (Cross Channel Cross-Category Marketing) team seeks an Applied Scientist to revolutionize our marketing strategies. XCM's mission is to build the most measurably effective, creatively impactful, and cross-channel campaigning capabilities possible, with the aim of growing "big-bet" programs, strengthening positive brand perceptions, and increasing long-term free cash flow. As a science team, we're tackling complex challenges in marketing incrementality measurement, optimization and audience segmentation. In this role, you'll collaborate with a diverse team of scientists and economists to build and enhance causal measurement, optimization and prediction models for Amazon's global multi-billion dollar fixed marketing budget. You'll also work closely with various teams to develop scientific roadmaps, drive innovation, and influence key resource allocation decisions. Key job responsibilities 1) Innovating scalable marketing methodologies using causal inference and machine learning. 2) Developing interpretable models that provide actionable business insights. 3) Collaborating with engineers to automate and scale scientific solutions. 4) Engaging with stakeholders to ensure effective adoption of scientific products. 5) Presenting findings to the Amazon Science community to promote excellence and knowledge-sharing.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, WA, Seattle
The Global Cross-Channel and Cross- Category Marketing (XCM) org are seeking an experienced Economist to join our team. XCM’s mission is to be the most measurably effective and creatively breakthrough marketing organization in the world in order to strengthen the brand, grow the business, and reduce cost for Amazon overall. We achieve this through scaled campaigning in support of brands, categories, and audiences which aim to create the maximum incremental impact for Amazon as a whole by driving the Amazon flywheel. This is a high impact role with the opportunities to lead the development of state-of-the-art, scalable models to measure the efficacy and effectiveness of a new marketing channel. In this critical role, you will leverage your deep expertise in causal inference to design and implement robust measurement frameworks that provide actionable insights to drive strategic business decisions. Key Responsibilities: Develop advanced econometric and statistical models to rigorously evaluate the causal incremental impact of marketing campaigns on customer perception and customer behaviors. Collaborate cross-functionally with marketing, product, data science and engineering teams to define the measurement strategy and ensure alignment on objectives. Leverage large, complex datasets to uncover hidden patterns and trends, extracting meaningful insights that inform marketing optimization and investment decisions. Work with engineers, applied scientists and product managers to automate the model in production environment. Stay up-to-date with the latest research and methodological advancements in causal inference, causal ML and experiment design to continuously enhance the team's capabilities. Effectively communicate analysis findings, recommendations, and their business implications to key stakeholders, including senior leadership. Mentor and guide junior economists, fostering a culture of analytical excellence and innovation.
US, WA, Seattle
We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA Do you love using data to solve complex problems? Are you interested in innovating and developing world-class big data solutions? We have the career for you! EPP Analytics team is seeking an exceptional Data Scientist to recommend, design and deliver new advanced analytics and science innovations end-to-end partnering closely with our security/software engineers, and response investigators. Your work enables faster data-driven decision making for Preventive and Response teams by providing them with data management tools, actionable insights, and an easy-to-use reporting experience. The ideal candidate will be passionate about working with big data sets and have the expertise to utilize these data sets to derive insights, drive science roadmap and foster growth. Key job responsibilities - As a Data Scientist (DS) in EPP Analytics, you will do causal data science, build predictive models, conduct simulations, create visualizations, and influence data science practice across the organization. - Provide insights by analyzing historical data - Create experiments and prototype implementations of new learning algorithms and prediction techniques. - Research and build machine learning algorithms that improve Insider Threat risk A day in the life No two days are the same in Insider Risk teams - the nature of the work we do and constantly shifting threat landscape means sometimes you'll be working with an internal service team to find anomalous use of their data, other days you'll be working with IT teams to build improved controls. Some days you'll be busy writing detections, or mentoring or running design review meetings. The EPP Analytics team is made up of SDEs and Security Engineers who partner with Data Scientists to create big data solutions and continue to raise the bar for the EPP organization. As a member of the team you will have the opportunity to work on challenging data modeling solutions, new and innovative Quicksight based reporting, and data pipeline and process improvement projects. About the team Diverse Experiences Amazon Security values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why Amazon Security? At Amazon, security is central to maintaining customer trust and delivering delightful customer experiences. Our organization is responsible for creating and maintaining a high bar for security across all of Amazon’s products and services. We offer talented security professionals the chance to accelerate their careers with opportunities to build experience in a wide variety of areas including cloud, devices, retail, entertainment, healthcare, operations, and physical stores Inclusive Team Culture In Amazon Security, it’s in our nature to learn and be curious. Ongoing DEI events and learning experiences inspire us to continue learning and to embrace our uniqueness. Addressing the toughest security challenges requires that we seek out and celebrate a diversity of ideas, perspectives, and voices. Training & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, training, and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
IN, KA, Bengaluru
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to create state-of-the-art solutions for providing better value to Amazon’s customers? Do you want to build and deploy advanced algorithmic systems that help optimize millions of transactions every day? Are you excited by the prospect of analyzing and modeling terabytes of data to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the Machine Learning and Data Sciences team for India Consumer Businesses. If you have an entrepreneurial spirit, know how to deliver, love to work with data, are deeply technical, highly innovative and long for the opportunity to build solutions to challenging problems that directly impact the company's bottom-line, we want to talk to you. Major responsibilities - Use machine learning and analytical techniques to create scalable solutions for business problems - Analyze and extract relevant information from large amounts of Amazon’s historical business data to help automate and optimize key processes - Design, development, evaluate and deploy innovative and highly scalable models for predictive learning - Research and implement novel machine learning and statistical approaches - Work closely with software engineering teams to drive real-time model implementations and new feature creations - Work closely with business owners and operations staff to optimize various business operations - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation - Mentor other scientists and engineers in the use of ML techniques