Garegin Papoian, the Monroe Martin Professor at the University of Maryland, is seen sitting at a desk with an open laptop in front of him. He has turned around in his seat to face the camera.
Garegin Papoian is the Monroe Martin Professor at the University of Maryland. Within his Papoian Lab, a theoretical physical chemistry group located at the university, his team is working toward developing fundamental molecular models of the whole cell, a concept still in its infancy
Courtesy of Garegin Papoian

Garegin Papoian’s quest to model an elusive class of proteins

With the support of an Amazon Research Award, Papoian’s team is deciphering the dynamics of intrinsically disordered proteins.

How do molecules come together and start to behave like a living system? This is the type of question that drives Garegin Papoian’s research. At the University of Maryland, where he is the Monroe Martin Professor, he has been focusing on computational modeling of biological molecules like proteins and DNA. Within his Papoian Lab, a theoretical physical chemistry group also located at the university, his team is also working toward developing fundamental molecular models of the whole cell, a concept still in its infancy.

Papoian’s path into science was determined early on. Growing up in Armenia, then a part of the Soviet Union, he went to a special school of physics and mathematics, where he was introduced to Science Olympiads. While in high school, he won the first place in the Republic of Armenia in separate Olympiads in chemistry, physics, mathematics and biology. “Science Olympiads were a big reason why I got drawn into science, in particular to chemistry and physics”, he says.

Because of his success in the competitions, he was invited to study at an advanced chemistry college in Moscow established specifically for Olympiad winners.

“I was 16,” he says, “but it was assumed that we already knew all university level chemistry. So, they would start immediately with a very high-level training.” The program included an internship in the United States, at the University of Kansas. From there he eventually enrolled as a graduate student at Cornell University, where he pursued his PhD in quantum chemistry, working under the Nobel Laureate, Roald Hoffmann.

During his postdoc, he turned to classical physics with a particular emphasis on biophysics. “I was interested in bringing concepts of physical chemistry to understand biological phenomena from the molecular perspective,” he says. “And my long-term career goal is to develop concepts both for proteins and cells.”

Predicting a protein’s shape

A protein is a large molecule essential to all living things. The sequence of amino acids that form a protein determines its three-dimensional structure. Each protein has a unique shape that dictates its function. Being able to predict what a protein structure looks like from its amino acid sequence has been a long-standing scientific challenge and one of the research interests of Papoian’s group, for which he received an AWS Machine Learning Research Award in 2018.

This animation shows the structure of a protein called linker histone H1
This animation shows the structure of a protein called linker histone H1, including its disordered tails, predicted by Papoian's team. "We discovered that interactions of those disordered tails with DNA help to structurally position H1 with respect to the nucleosome. In terms of the bigger picture, the H1-nucleosome interactions regulate epigenetic processes, determining for example which particular genes should be turned on or off,” says Papoian.

One of the applications of protein structure prediction is drug design. “When you design a drug, you need to know what the target looks like,” says Papoian. If you know that the target protein has a certain pocket, for example, you can develop a molecule that will fit nicely into that pocket. While identifying genes associated with diseases has become easier, the sequence of a gene doesn’t tell you what the protein expressed by it looks like, and experimental methods to determine the protein shape are lengthy and expensive.

IDPs ... are more like this crazy spaghetti. It's very hard to deal with them both experimentally and computationally.
Garegin Papoian

Even in the wake of DeepMind demonstrating that AlphaFold is capable of predicting protein structures with an unprecedented level of accuracy, challenges still remain.

It turns out that a large proportion of human proteins are not completely structured in neat three-dimensional shapes. These are called the intrinsically disordered proteins (IDPs). “They are much more dynamic and mostly never fall into a single structure,” says Papoian. “They are more like this crazy spaghetti. It's very hard to deal with them both experimentally and computationally because they are so elusive.” He notes that about a third of human proteins are like that, including many important disease-causing proteins.

Papoian’s AWS Machine Learning Research Award enabled his team to advance the development of a system that is better suited to simulating these proteins.

Tackling disordered proteins

For the past few years, Papoian Lab has been working with a protein modeling framework called AWSEM-MD (pronounces “awesome”), which stands for associative memory, water-mediated, structure and energy model — molecular dynamics. It has been developed jointly with Peter Wolynes, Papoian’s former postdoctoral advisor who is currently at Rice University and with whom he continued to collaborate over the years.

Using the AWS Machine Learning Research Award, Papoian and his colleagues developed AWSEM-IDP, an AWSEM branch specifically designed to simulate intrinsically disordered proteins.

This system uses a database of protein fragment structures obtained experimentally, for example, through nuclear magnetic resonance (NMR) spectroscopy — a technique that determines the structure and dynamics of proteins. "These fragments serve as structural memories that guide the IDP to undergo structural transformations that are informed by the experiment,” Papoian explains. “This allows simulating more realistic IDP dynamics.”

The fragment database may also contain structures from atomistic simulations — a type of simulation where every atom of a protein is present. “The reason why we prefer not to do those in general is that they’re very expensive, so we cannot do very big simulations. But we can do atomistic simulations of short fragments to give us good fragment memories, again improving the accuracy of IDP’s structural exploration in AWSEM simulations,” he says.

An IDP will prefer multiple structures, not just one.

“That's the key difference from regular proteins: IDPs are multi-faceted in essence. But they still prefer certain structures over others. And the AWSEM-IDP model allows you to correctly describe those preferences,” Papoian explained. This model was described in a 2018 article published at the Journal of Physical Chemistry B.

In another work published earlier this year that was supported by the AWS Machine Learning Award, Papoian and his colleagues applied AWSEM-IDP to study a protein called linker histone H1, which plays an essential role in regulating many important biological processes. This protein has two intrinsically disordered regions, parts of its structure that are not well folded and resemble two tails. Because they are disordered, it’s much harder to understand what they do and how they interact.

Proteins like linker histone H1 regulate histone complexes, which act like a spool around which the DNA wraps to create structures called nucleosomes. “In this paper, we used AWSEM-IDP to model the nucleosome with linker histone H1, in particular with these disordered tails. And that allowed us to understand how the linker histone and the nucleosome come together and interact, and what's the role of these disordered tails,” says Papoian. Understanding proteins’ interactions with nucleosomes may give important insights on epigenetics, which is one of Papoian Lab’s interests.

Future challenges

Because making sense of IDPs is such a difficult process, Papoian says that AWSEM-IDP is an ongoing program with room for improvement. “What we have currently works better in some classes of proteins, and not so much in others. So next we’ll explore what are the challenges for what we currently have in ASWEM-IDP and try to come up with new advances to overcome them.”

In addition to IDPs, Papoian Lab will also continue to pursue the use of deep learning for structure prediction of well-folded proteins. Although there is some conceptual overlap with AlphaFold, Papoian believes that AWSEM-MD is a powerful tool and has advantages to other approaches when it comes to molecular dynamics.

Proteins are not frozen objects. Some of them are well structured, but many are not structured at all, and they are dynamic and move and shape-shift incessantly.
Garegin Papoian

“Proteins are not frozen objects,” he says. “Some of them are well structured, but many are not structured at all, and they are dynamic and move and shape-shift incessantly. So, to understand how these proteins function, you must model their dynamics and that’s what AWSEM-MD can do best.”

Papoian thinks one exciting area to be explored in coming decades will be combining machine learning and physics to work on protein structure prediction, protein dynamics, multiprotein complexes, and epigenetics.

“There are lots of things that still remain to be understood in our models. And I think that probably neither physics nor machine learning by themselves can tackle them. But a program that brings them together in a productive way can be very powerful,” he said.

Modeling an entire cell

Another ambitious project that Papoian and his colleagues are pursuing is to develop a computational model of an entire cell. “We still don’t have a blueprint of a cell the way we have a blueprint of a car or a Boeing airplane.”

To do that, his group develops their own software from scratch.

Garegin Papoian: How do cells move? Chemistry meets mechanics

“We basically do the science, the physics, and biophysics of what is needed to model our cells. We derive the needed algorithms from scratch based on the laws of physics and chemistry and then we program that into a computer and run simulations on a supercomputer,” he explained. This has to be done at a single molecule resolution, he adds, meaning that they have to track every single molecule within a cell.

To achieve that, the Papoian Lab developed a model called MEDYAN.

“We can already model some number of proteins, the membrane, we can model rich chemistry. We have developed some of the fundamental chemistry and physics components of what needs to be done,” he says. The next step is to scale it. “We usually do simulations with several types of proteins. So instead of several, you will need maybe hundreds or thousands of different types of proteins, so it just brings more complexity.”

When that happens, it will be a huge revolution in biomedicine, he says. “Then lots of things that people laboriously spend years doing in the laboratory could just run on AWS servers. And you could do your experiments and search for treatments computationally, which would be much cheaper and faster.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Research areas

Related content

US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
US, MN, Minneapolis
AWS Central Economics is an interdisciplinary team on the cutting edge of economics, statistical analysis, and machine learning whose mission is to solve problems that have high risk with abnormally high returns. Our team leverages the strengths of our scientists to build solutions for some of the toughest business problems here at Amazon AWS. We are looking for an exceptionally talented, seasoned, and motivated Economist to manage a team of economists and data scientists to drive the science for AWS. Key job responsibilities Manage a team of economists and data scientists to deliver actionable economic analyses to business leaders, provide leadership on the economics and science used in the analyses, and engage with business leaders to identify challenges AWS faces that call for in-depth economic analyses and to ensure the analyses have their intended impact.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.