Amanda Prorok is seen sitting on a floor in her lab at the University of Cambridge, she is surrounded by some mobile robots
Amanda Prorok leads the Prorok Lab at the University of Cambridge. She and her team currently work on finding practical methods to solve problems that require robots to coordinate with each other.

Amanda Prorok: Scaling new frontiers in multi-robotic research

The professor of collective intelligence and robotics at the University of Cambridge earned a 2019 Amazon Research Award for “Learning Explicit Communication for Multi-Robot Path Planning”.

When Amanda Prorok chose computer science as an elective in high school, its main appeal was that it was objectively evaluated — a solution either works or it doesn't. In retrospect, this teenage life hack proved fateful, paving a career path. Today, Prorok is pioneering practical solutions to hard coordination problems in multi robotics: the science of how robots interact.

Now professor of collective intelligence and robotics at the University of Cambridge, Prorok has published several papers on multi-robot systems. Her lab’s research project, “Learning Explicit Communication for Multi-Robot Path Planning”, earned her a 2019 Amazon Research Award.

The seeds for Prorok’s fascination with communication were sown in her infancy. Born in São Paulo to a Brazilian mother and English father, she grew up in a multilingual household. Her family moved to Switzerland when she was four, and she became fluent in Portuguese, English, German, and French. She was deeply influenced by both parents. From her mother, a psychologist, she gained a curiosity about human behavior and interaction, and from her father, an engineer, she learned how systems originated and functioned.

Moving from a primarily German-speaking school to a French-speaking one — the École Polytechnique Fédérale de Lausanne (EPFL) — Prorok found it challenging to suddenly adapt to advanced subjects like mathematics, physics, and computer science in a different language. She also found herself among a gender minority in her class of 200 men and 10 women.

“The system was competitive, hard, and industrial,” she remembered. “It was basically sink or swim.” She was determined to swim.

Discovering collective intelligence

In her fourth year of computer science at the EPFL, she learned about collective intelligence and swarm robotics.

“It was my first real introduction to how we observe complex natural systems,” she said. “This idea that we can reverse engineer nature is what I love and find so powerful.”

Prorok was especially inspired by Craig Reynolds’ Boids project, a “computer model of coordinated animal motion” that mimicked the flocking behavior of birds.

Craig Reynolds — original 1986 Boids simulation

For her undergraduate project, Prorok tinkered with reverse engineering by exploring algorithms to predict individual and group behavior. She was intrigued by the question of why multiple intelligent agents worked in teams to serve a higher order goal and how their interactions could be optimized.

The result, she believed, was more than just the sum of individual parts. It was the “mysterious, emergent intelligence embedded in such interactions,” she recalled, that intrigued her.

But at the time, there seemed to be no future for her in computer science.

“It would have been utterly horrible to go into a company and do website programming. There was no creativity in there — no spark, no magic,” she said.

Japan: Collective intelligence in practice

An internship in Japan sparked the magic she had been seeking.

In her final year at EPFL, she was among four students who won an annual internship competition. Given her interest in robotics, she was matched with Mitsubishi Electric’s Advanced R&D Center in Amagasaki. There, she worked on automating robots that performed pick and place tasks in warehouses.

Living in Japan changed her world view. She was enthralled by the country’s cultural philosophies, particularly the spiritual beliefs about the interdependency between humans and their environment. She was also fascinated by how people in big cities such as Tokyo navigated crowded spaces, which led to her curiosity about how collective intelligence could be at play in crowd navigation.

“In Japan, you observe an enormous degree of collective intelligence,” she said. “There is no way you can live in a dense place such as Tokyo so efficiently, as Japanese people do, without it.”

Years later, when she set up her lab, the question fueled her research on robotics: How does one program a group of robots to move smoothly and as efficiently as possible while avoiding collisions and deadlocks?

Robotics and indoor localization

Prorok’s experience in Japan spurred her to return to computer science for her doctorate at EPFL.

Her thesis focused on indoor localization — how autonomous agents could locate themselves in indoor environments and determine their coordinates, as well as communicate with other agents when GPS signals were weak or absent.

Amanda Prorok: Machine learning for multi-robot and multi-agent problems

She used mobile robots to emulate moving targets and tracked them in real time using a ground-truth positioning system. At the time, ultra wide-band (UWB) was an emerging technology that enabled devices to communicate and track precise locations. But UWB also had the disadvantage of complex signal processing and poor performance in cluttered environments due to signal reflections.

Prorok wanted to overcome the disadvantages of UWB and explore how robotic teams could not only help each other but also improve their self-knowledge. She eventually addressed the indoor localization problem with a hybrid approach using UWB localization and collaborative localization.

Related content
Deep learning to produce invariant representations, estimations of sensor reliability, and efficient map representations all contribute to Astro’s superior spatial intelligence.

Her dissertation won the Asea Brown Boveri (ABB) prize for ‘best thesis’ in computer science at EPFL.

After graduation, Prorok joined Vijay Kumar in the General Robotics, Automation, Sensing and Perception Laboratory at the University of Pennsylvania to complete her postdoctoral degree. She was interested in researching how swarms of robots could collectively perform increasingly complex tasks.

She found that the key to a strong robot team is when each member has different but complementary capabilities and characteristics. Heterogenous robot swarms proved themselves more resilient to unexpected disturbances.

“Heterogeneity is an underexplored field of engineering, whereas in the social and natural sciences, it is relatively well studied,” she said. “Diversity is abundant in nature and the cornerstone of life and evolution. But what exactly must be different, and to what extent? How should teams communicate to leverage their complementarity?”

The Prorok Lab

At the University of Cambridge, which Prorok joined after her postdoctoral studies, she founded the Prorok Lab, where she and her team currently work on finding practical methods to solve problems that require robots to coordinate with each other.

This includes, for example, flocking or pathfinding through collective motion. Flocking refers to each robot in the group adjusting its velocity and aligning with other robots while maintaining a predetermined path and avoiding collisions.

A fleet of miniature cars for experiments in cooperative driving

The lab also works on distributed coverage, which entails sending robots into specific locations to gain familiarity with the layout of spaces, automate product delivery, monitor the environment, and conduct search and rescue for injured populations in disaster scenarios.

The 2019 Amazon Research Award recognized the lab’s work pioneering machine learning methods to synthesize local communication and decision-making policies. The award helped Prorok attract and retain top PhD students by funding their research and travel through stipends, and it provided credits for Amazon Web Services (AWS) to facilitate the machine learning components of the lab’s projects.

Prorok’s work has many potential applications in the real world. For example, one of her co-authored articles proposes a “plug and play” system that deploys connected sensors without requiring a global map, positioning data, or pre-calibration of the sensor network to guide a robot through a busy, cluttered, or dynamic environment. Prorok envisions using robots in remote parts of the world where connectivity is sparse or unavailable.

“I really like this idea of robots providing more sensing,” she said. “We need to be thinking about the benefits of instrumenting the world.”

Research areas

Related content

LU, Luxembourg
The Decision, Science and Technology (DST) team part of the global Reliability Maintenance Engineering (RME) is looking for a Senior Operations Research Scientist interested in solving challenging optimization problems in the maintenance space. Our mission is to leverage the use of data, science, and technology to improve the efficiency of RME maintenance activities, reduce costs, increase safety and promote sustainability while creating frictionless customer experiences. As a Senior OR Scientist in DST you will be focused on leading the design and development of innovative approaches and solutions by leading technical work supporting RME’s Predictive Maintenance (PdM) and Spare Parts (SP) programs. You will connect with world leaders in your field and you will be tackling customer's natural language challenges by carrying out a systematic review of existing solutions. The appropriate choice of methods and their deployment into effective tools will be the key for the success in this role. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail and outstanding ability in balancing technical leadership with strong business judgment to make the right decisions about model and method choices. Key job responsibilities • Provide technical expertise to support team strategies that will take EU RME towards World Class predictive maintenance practices and processes, driving better equipment up-time and lower repair costs with optimized spare parts inventory and placement • Implement an advanced maintenance framework utilizing Machine Learning technologies to drive equipment performance leading to reduced unplanned downtime • Provide technical expertise to support the development of long-term spares management strategies that will ensure spares availability at an optimal level for local sites and reduce the cost of spares A day in the life As a Senior OR Scientist in DST you will be focused on leading the design and development of innovative approaches and solutions by leading technical work supporting RME’s Predictive Maintenance (PdM) and Spare Parts (SP) programs. You will connect with world leaders in your field and you will be tackling customer's natural language challenges by carrying out a systematic review of existing solutions. The appropriate choice of methods and their deployment into effective tools will be the key for the success in this role. About the team Our mission is to leverage the use of data, science, and technology to improve the efficiency of RME maintenance activities, reduce costs, increase safety and promote sustainability while creating frictionless customer experiences. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists in the Forecasting, Macroeconomics & Finance field document, interpret and forecast Amazon business dynamics. This track is well suited for economists adept at combining cutting edge times-series statistical methods with strong economic analysis and intuition. This track could be a good fit for candidates with research experience in: macroeconometrics and/or empirical macroeconomics; international macroeconomics; time-series econometrics; forecasting; financial econometrics and/or empirical finance; and the use of micro and panel data to improve and validate traditional aggregate models. Economists at Amazon are expected to work directly with our senior management and scientists from other fields on key business problems faced across Amazon, including retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. The Forecasting, Macroeconomics & Finance field utilizes methods at the frontier of economics to develop formal models to understand the past and the present, predict the future, and identify relevant risks and opportunities. For example, we analyze the internal and external drivers of growth and profitability and how these drivers interact with the customer experience in the short, medium and long-term. We build econometric models of dynamic systems, using our world class data tools, formalizing problems using rigorous science to solve business issues and further delight customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists in the Forecasting, Macroeconomics & Finance field document, interpret and forecast Amazon business dynamics. This track is well suited for economists adept at combining cutting edge times-series statistical methods with strong economic analysis and intuition. This track could be a good fit for candidates with research experience in: macroeconometrics and/or empirical macroeconomics; international macroeconomics; time-series econometrics; forecasting; financial econometrics and/or empirical finance; and the use of micro and panel data to improve and validate traditional aggregate models. Economists at Amazon are expected to work directly with our senior management and scientists from other fields on key business problems faced across Amazon, including retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. The Forecasting, Macroeconomics & Finance field utilizes methods at the frontier of economics to develop formal models to understand the past and the present, predict the future, and identify relevant risks and opportunities. For example, we analyze the internal and external drivers of growth and profitability and how these drivers interact with the customer experience in the short, medium and long-term. We build econometric models of dynamic systems, using our world class data tools, formalizing problems using rigorous science to solve business issues and further delight customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Economists in the Forecasting, Macroeconomics & Finance field document, interpret and forecast Amazon business dynamics. This track is well suited for economists adept at combining cutting edge times-series statistical methods with strong economic analysis and intuition. This track could be a good fit for candidates with research experience in: macroeconometrics and/or empirical macroeconomics; international macroeconomics; time-series econometrics; forecasting; financial econometrics and/or empirical finance; and the use of micro and panel data to improve and validate traditional aggregate models. Economists at Amazon are expected to work directly with our senior management and scientists from other fields on key business problems faced across Amazon, including retail, cloud computing, third party merchants, search, Kindle, streaming video, and operations. The Forecasting, Macroeconomics & Finance field utilizes methods at the frontier of economics to develop formal models to understand the past and the present, predict the future, and identify relevant risks and opportunities. For example, we analyze the internal and external drivers of growth and profitability and how these drivers interact with the customer experience in the short, medium and long-term. We build econometric models of dynamic systems, using our world class data tools, formalizing problems using rigorous science to solve business issues and further delight customers. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
US, WA, Seattle
Amazon.com strives to be Earth's most customer-centric company where customers can shop in our stores to find and discover anything they want to buy. We hire the world's brightest minds, offering them a fast paced, technologically sophisticated and friendly work environment. Economists at Amazon partner closely with senior management, business stakeholders, scientist and engineers, and economist leadership to solve key business problems ranging from Amazon Web Services, Kindle, Prime, inventory planning, international retail, third party merchants, search, pricing, labor and employment planning, effective benefits (health, retirement, etc.) and beyond. Amazon Economists build econometric models using our world class data systems and apply approaches from a variety of skillsets – applied macro/time series, applied micro, econometric theory, empirical IO, empirical health, labor, public economics and related fields are all highly valued skillsets at Amazon. You will work in a fast moving environment to solve business problems as a member of either a cross-functional team embedded within a business unit or a central science and economics organization. You will be expected to develop techniques that apply econometrics to large data sets, address quantitative problems, and contribute to the design of automated systems around the company. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Bellevue, WA, USA | Boston, MA, USA | Los Angeles, CA, USA | New York, NY, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA