The science behind the improved Fire TV voice search

How phonetically blended results (PBR) help ensure customers find the content they were actually asking for.

Put your hand up if you enjoy using your TV remote to type in the name of the show you want to watch next. Who doesn’t love shuffling the highlighted box across the screen, painstakingly selecting each letter in turn? And let’s not forget the joy of accidentally selecting a wrong letter.

Such text-based search works, but it can feel like a chore. It’s much easier and faster to just ask for what you want. With Amazon’s Fire TV, you can ask the Alexa voice assistant to find your favorite shows, movies, movie genres, actors … you name it.

But voice-based search can come with its own frustrations. What if Alexa misheard a request for the TV show Hunted as “haunted” and as a result presented a spooky screenful of incorrect suggestions?

Related content
The phrase launches a feature built to help customers navigate an increasingly complex and diverse world of content.

This is a story of how two groups at Amazon — the Fire TV Search team and the Alexa Entertainment Spoken Language Understanding team — collaborated to launch an improved Fire TV voice search experience in the U.S. in November 2022.

The new search system gives customers a greater chance of finding what they are looking for, on their first attempt, by casting the search net a little wider — and a little smarter. It works by harnessing a suite of Alexa machine learning (ML) models to generate additional, similar-sounding words to inject into Fire TV’s search function to broaden the scope of the results presented to the customer. Hence its name: phonetically blended results (PBR). Today, about 80% of the 20 million or so unique search terms that Fire TV deals with are augmented by PBR.

To better understand PBR and why it was needed, let’s look at one reason the previous version of Fire TV voice search could get things wrong. A customer, in a noisy room full of excited children, holds down the microphone button on the Alexa Voice Remote and simply says “Find Encanto”.

Image is a screengrab of a Fire TV screen which includes Encanto and several similar sounding results
Phonetically blended results give customers a greater chance of finding what they are looking for, on the first attempt, by harnessing a suite of machine learning models to generate additional, similar-sounding words to inject into Fire TV’s search function.

This piece of audio first goes to Alexa’s automatic-speech-recognition (ASR) system to be converted to text. But in this case, the system mishears the customer utterance and converts it to “Find Encounter”.

Fire TV’s search algorithm, known as ReRanker, faithfully performs the erroneous search and presents the customer with a selection of content with the word “encounter” in the title or description, prominently featuring, for example the Amazon original movie Encounter or popular TV shows that include that word. Encanto is nowhere to be seen. The customer sighs, asks the kids to pipe down, presses the microphone button and tries again. Or they resort to the very method they were trying to avoid in the first place: typing with the remote.

One challenge here is that because Alexa supports myriad applications, its ASR system is necessarily generalized.

“Previously, Alexa was not tuned into individual Fire TV customers’ preferences,” says Kanna Shimizu, senior manager of research science in Alexa AI’s Natural Understanding (NU) group, who led the PBR project. “That's the layer my team is adding. We are connecting Alexa machine learning with Fire TV search algorithms to build toward an end-to-end algorithm to help customers find what they’re looking for.”

Related content
A behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation to overcome those challenges.

The reason the voice search for Encanto failed is that the search process decided early on that “encounter” was the customer’s intended search query, so “Encanto” wasn’t even searched for.

“The big change that PBR introduced was to say, ‘Actually, the customer might have said or meant this other thing, but we’re not sure, so let’s search for both,’” says Shimizu. “Let’s keep the door open to different interpretations of what the customer may have said, so they can decide for themselves on the search results screen.”

How would our customer example look now? The search results page will now show Encanto as an option in addition to Encounter.

Building this keep-your-options-open approach into Fire TV voice search was complex for several reasons. One challenge is generating appropriate additional search candidates that are phonetically similar to the customer’s utterance. The next was changing Fire TV’s ReRanker algorithm, already a high-performing recommender system, to utilize the PBR system’s suggested search candidates when delivering results to the customer.

It's really a two-way communication. We use Alexa models to improve the performance of Fire TV and we use Fire TV customer signals to improve the performance of Alexa models. It’s a very cool learning loop.
Mingxian Wang

The PBR system addresses the first challenge in multiple ways. Most of the additional search candidates come from corrective actions taken by customers themselves. That’s because when a customer’s voice search fails to deliver what they are looking for, about 40% of the time they will try voice search again or type what they are looking for, leading to a successful viewing. Knowing the initial mistaken search term and the final successful one allows the PBR system to, for example, map the search candidate “Encounter” onto the additional search candidate “Encanto”.

That self-correction process is how PBR learned that the search term “hunted” sometimes represents a search for the 2018 Netflix reality series Haunted.

The PBR system can make these useful connections in part because it contains knowledge of the wider world via the Alexa Teacher Model, a large language model trained on enormous amounts of Internet data and subsequently fine-tuned with data including Fire TV voice traffic and customer self-corrections.

“It's really a two-way communication,” says Mingxian Wang, senior applied scientist at Alexa AI-NU. “We use Alexa models to improve the performance of Fire TV and we use Fire TV customer signals to improve the performance of Alexa models. It’s a very cool learning loop.”

Besides the Alexa Teacher Model and the model that learns from customers’ on-screen search behavior, the PBR system also uses an Alexa model that identifies phonetic variations for popular titles, to further enrich its search results.

Related content
New approach speeds graph-based search by 20% to 60%, regardless of graph construction method.

Using a mixture of these three models, by the time it launched in late 2022, the PBR system had already generated millions of search-query mappings, such as “Encounter” to “Encanto” — and that number continues to grow. Here’s another example. To avoid Alexa mishearing “Zatima”, a popular new show and a novel word unknown to ASR, as “Fatima”, which is a movie and also a city in Portugal, PBR’s models suggests that Zatima also be presented along with Fatima.

“In this way, we serve the customer who wanted the new show and also don’t break the customer experience for those searching for the movie,” says Wang.

“It’s a subtle balance”

It's one thing to suggest additional results to ReRanker. It’s another to change the algorithm to take PBR’s suggestions and present these results to customers. And if it does, how should it rank them on the results screen?

The teams solved this problem by inventing the PBR confidence score. With every search-query mapping, the PBR system provides ReRanker with a prediction of how likely the customer is to click on that result.

“We want customers to see our alternatives but don’t want to boost them higher than might be warranted, because we want to avoid overwhelming customers with irrelevant search results,” says Shimizu. “It’s a subtle balance, and that scoring mechanism was the key to making this whole thing succeed.”

Related content
Dataset that requires question-answering models to look up multiple facts and perform comparisons bridges a significant gap in the field.

To illustrate this subtlety, consider the search term “Enchanted” (a fairy-tale movie). The PBR system estimates that search results based on this term will deliver a customer clickthrough rate (i.e., a successful search) of 60%. So this should be the most prominently displayed result.

But the search term “enchanted” also triggers several PBR candidates — “Encanto” (with an anticipated clickthrough rate of 20%) and “Disenchanted” (5%). You can see that by blending these similar-sounding shows into its results, ReRanker is more likely to strike gold for the customer.

“In testing, we saw the ReRanker model picking up on the PBR confidence score and boosting those search results higher. It learned that this feature was worth paying attention to,” says Aleksandr Kulikov, a principal software engineer at Fire TV.

“The Fire TV voice search is already successful for most customer voice searches — it’s easy to deliver popular searches like ‘Jack Ryan’ correctly — but for some customers, PBR is significantly improving their voice search experience,” says Kulikov. Where it makes the biggest difference is, of course, in ambiguous searches, where it can boost customer clickthroughs by 10% or more. “A gain of 10% is like, wow, that’s significant,” Kulikov adds.

And it will only get better with time. The Alexa and Fire TV teams are working toward a feedback learning system that will allow PBR’s models to automatically generate new search candidates, prune ineffective ones, and home in on increasingly accurate confidence scores.

Ultimately, bringing the power of multiple Alexa machine learning models to bear on Fire TV voice search is helping to give Amazon customers what they want the first time, more of the time, through a greater understanding of diverse voices and of the world itself. Hands up if you like the sound of that.

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!