Amazon releases dataset for complex, multilingual question answering

Dataset that requires question-answering models to look up multiple facts and perform comparisons bridges a significant gap in the field.

Question answering (QA) is the machine learning task of learning to predict answers to questions. For example, given the question, “Where was Natalie Portman born?”, a QA model could predict the answer “Jerusalem”, using articles from the web, facts in a knowledge graph, or knowledge stored within the model. This is an example of a simple question, since it can be answered using a single fact or a single source on the web, such as the Natalie Portman Wikipedia page.

Related content
Novel pretraining method enables increases of 5% to 14% on five different evaluation metrics.

Not all questions are simple. For example, the question “What movie had a higher budget, Titanic or Men in Black II?” is a complex question because it requires looking up two different facts (Titanic | budget | 200 million USD and Men in Black II | budget | 140 million USD), followed by a calculation to compare values (200 million USD > 140 million USD).

While many state-of-the art question-answering models get good performance on simple questions, complex questions remain an open problem. One reason is a lack of datasets. Most existing QA datasets are large but simple, complex but small, or large and complex but synthetically generated, so they are less natural. A majority of QA datasets are also only in English.

To help bridge this gap, we have publicly released a new dataset: Mintaka, which we describe in a paper we're presenting at this year’s International Conference on Computational Linguistics (COLING).

Mintaka is a large, complex, natural, and multilingual question-answer dataset with 20,000 questions collected in English and professionally translated into eight languages: Arabic, French, German, Hindi, Italian, Japanese, Portuguese, and Spanish. We also ground Mintaka in the Wikidata knowledge graph by linking entities in the question text and answer text to Wikidata IDs.

Mintaka interface.png
The interface that Amazon Mechanical Turk workers used to annotate and link entities for the Mintaka dataset.

Building the dataset

We define complex questions as any question that requires an operation beyond a single fact lookup. We built Mintaka using the crowdsourcing platform Amazon Mechanical Turk (MTurk). First, we designed an MTurk task to elicit complex but natural questions. We asked workers to write question-answer pairs with one of the following complexity types:

Related content
Replacing hand annotation with a machine learning component reduces labor, while an intersection operation enables multiple-entity queries.

  • Count (e.g., Q: How many astronauts have been elected to Congress? A: 4)
  • Comparative (e.g., Q: Is Mont Blanc taller than Mount Rainier? A: Yes)
  • Superlative (e.g., Q: Who was the youngest tribute in the Hunger Games? A: Rue)
  • Ordinal (e.g., Q: Who was the last Ptolemaic ruler of Egypt? A: Cleopatra)
  • Multi-hop (e.g., Q: Who was the quarterback of the team that won Super Bowl 50? A: Peyton Manning)
  • Intersection (e.g., Q: Which movie was directed by Denis Villeneuve and stars Timothee Chalamet? A: Dune)
  • Difference (e.g., Q: Which Mario Kart game did Yoshi not appear in? A: Mario Kart Live: Home Circuit)
  • Yes/No (e.g., Q: Has Lady Gaga ever made a song with Ariana Grande? A: Yes.)
  • Generic (e.g., Q: Where was Michael Phelps born? A: Baltimore, Maryland)
Related content
New metric can be calculated 55 times as quickly as its state-of-the-art predecessor, making it practical for model training.

Question-answer pairs were limited to eight categories: movies, music, sports, books, geography, politics, video games, and history. They were collected as free text, with no restrictions on what sources could be used.

Next, we created an entity-linking task where workers were shown question-answer pairs from the previous task and asked to either identify or verify the entities in either the question or answer and provide supporting evidence from Wikipedia entries. For example, given the question “How many Oscars did Argo win?”, a worker could identify the film Argo as an entity and link to its Wikidata URL.

Examples of Mintaka questions are shown below:

Q: Which Studio Ghibli movie scored the lowest on Rotten Tomatoes?
A: Earwig and the Witch

Q: When Franklin D. Roosevelt was first elected, how long had it been since someone in his party won the presidential election?
A: 16 years

Q: Which member of the Red Hot Chili Peppers appeared in Point Break?
A: Anthony Kiedis

Results

Mintaka naturalness.png
A box plot showing the quartile, median, and mean (black diamond) naturalness ranks for all four datasets, from 1 (least natural) to 5 (most natural).

To see how Mintaka compares to previous QA datasets in terms of naturalness, we ran an evaluation on MTurk with four comparison datasets: KQA Pro, ComplexWebQuestions (CWQ), DROP, and ComplexQuestions (CQ). Workers were shown five questions, one from each dataset, and asked to rank them from 1 (least natural) to 5 (most natural). On average, Mintaka ranked higher in naturalness than the other datasets. This shows that Mintaka questions are perceived as more natural than automatically generated or passage-constrained questions.

Mintaka baselines.png
Results of English baseline models on Mintaka.

We also evaluated eight baseline QA models trained using Mintaka. The best-performing was the language model T5 for Closed Book QA, which scored 38% hits@1. The baselines show that Mintaka is a challenging dataset, and there is ample room for improving model design and training procedures.

Mintaka bridges a significant gap in QA datasets by being large-scale, complex, naturally elicited, and multilingual. With the release of Mintaka, we hope to encourage researchers to continue pushing question-answering models to handle more-complex questions in more languages.

Related content

US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, IL, Chicago
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist ILocation: Chicago, IllinoisPosition Responsibilities:Build the core intelligence, insights, and algorithms that support the real estate acquisition strategies for Amazon physical stores. Tackle cutting-edge, complex problems such as predicting the optimal location for new Amazon stores by bringing together numerous data assets, and using best-in-class modeling solutions to extract the most information out of them. Work with business stakeholders, software development engineers, and other data scientists across multiple teams to develop innovative solutions at massive scale.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, WA, Seattle
Are you motivated to explore research in ambiguous spaces? Are you interested in conducting research that will improve the employee and manager experience at Amazon? Do you want to work on an interdisciplinary team of scientists that collaborate rather than compete? Join us at PXT Central Science!The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are seeking a senior Applied Scientist with expertise in more than one or more of the following areas: machine learning, natural language processing, computational linguistics, algorithmic fairness, statistical inference, causal modeling, reinforcement learning, Bayesian methods, predictive analytics, decision theory, recommender systems, deep learning, time series modeling. In this role, you will lead and support research efforts within all aspects of the employee lifecycle: from candidate identification to recruiting, to onboarding and talent management, to leadership and development, to finally retention and brand advocacy upon exit.The ideal candidate should have strong problem-solving skills, excellent business acumen, the ability to work independently and collaboratively, and have an expertise in both science and engineering. The ideal candidate is not methods-driven, but driven by the research question at hand; in other words, they will select the appropriate method for the problem, rather than searching for questions to answer with a preferred method. The candidate will need to navigate complex and ambiguous business challenges by asking the right questions, understanding what methodologies to employ, and communicating results to multiple audiences (e.g., technical peers, functional teams, business leaders).About the teamWe are a collegial and multidisciplinary team of researchers in People eXperience and Technology (PXT) that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We leverage data and rigorous analysis to help Amazon attract, retain, and develop one of the world’s largest and most talented workforces.
US, WA, Bellevue
Job summaryThe Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Research Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, MA, Cambridge
Job summaryMULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Cambridge, MassachusettsPosition Responsibilities:Utilize code (Python, R, etc.) to build ML models to solve specific business problems. Build and measure novel online & offline metrics for personal digital assistants and customer scenarios, on diverse devices and endpoints. Research and implement novel machine learning algorithms and models. Collaborate with researchers, software developers, and business leaders to define product requirements and provide modeling solutions. Communicate verbally and in writing to business customers and leadership team with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendations.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000