How to produce factually accurate automatic text summaries

New metric can be calculated 55 times as quickly as its state-of-the-art predecessor, making it practical for model training.

Abstractive summarization is the automatic extraction and recombination of phrases from a text in order to summarize that text. Deep-learning-based abstractive-summarization systems are usually trained to maximize the overlap between the summaries they generate and sample summaries in their training data.

The trouble with this approach is that a summary that overlaps significantly with a target summary may recombine phrases in factually inaccurate manner. In the example below, which concerns an upcoming boxing match, the summarization model correctly concludes that “has a chink in his armor” summarizes an important aspect of the input text, but it applies it to the wrong boxer:

Klitschko example.png
Conventional metrics for training abstractive-summarization models don’t account for factual accuracy.

Although abstractive-summarization models have become very good at generating fluent, syntactically correct text, their frequent factual inaccuracy has severely hampered their adoption.

In a paper we presented at this year’s meeting of the Association for Computational Linguistics (ACL), we describe a new metric for measuring the performance of abstractive-summarization models, which accounts for factual accuracy. We also describe a methodology for using our metric to train abstractive-summarization models.

Our metric adopts the same general strategy as the earlier QAGS metric, but it’s 55 times as fast to apply, which makes it more practical for model training.

QAGS-QUALS-Image.png
Our new summary-scoring metric, QUALS (bottom), uses the same strategy as the earlier QAGS (top) but has a simpler architecture, enabling it to generate a score 55 times as quickly.
Credit: Glynis Condon

Using QAGS as an evaluation metric, we compared models trained using our approach to models trained using traditional metrics and methodologies, and we found that our approach improved on the best-performing previous models by 15% on one dataset and by 2% on another.

Scoring through question answering

QAGS (which stands for question answering and generation for summarization) uses a four-step procedure to score a text summary. First, it extracts names and noun phrases from the summary; these are potential answers to potential questions about the summary. 

Second, it feeds each extracted noun, together with the text of the summary, to a trained question generation model, which produces a question whose answer is the noun. Third, it feeds each of the generated questions to a trained question-answering model, once accompanied by the summary and once accompanied by the source text. 

QAGS-Image.cropped.png
QAGS requires the sequential application of three neural models: an answer extraction model, a question-answering model, and a question generation model.
Credit: Glynis Condon

The final score assesses the similarity between the answers based on the source text and the answers based on the summary. The intuition is that if both the summary and the source text cause the question-answering model to answer the questions in the same way, the summary is factually accurate. If they cause different answers, then the summary has probably garbled some facts.

By accounting for factual accuracy, QAGS offers a better assessment of summary quality than metrics based on phrasal overlap. But it requires the sequential application of three different deep-learning networks, which is inefficient.

QUALS

Our approach, which we call QUALS (for question answering with language model score for summarization), reduces the number of models to one, which makes it 55 times as fast as QAGS.

That one model is the joint question-and-answer generation (QAGen) model that members of our group presented at last year’s ACL. It takes a text as input and generates question-and-answer pairs pertaining to it.

QUALS-Image.cropped.png
QUALS requires a single neural model, a question-and-answer generation model.
Credit: Glynis Condon

The output of the QAGen model for a given input can be thought of as a huge tree, in which the nodes are words and each edge encodes the likelihood that a particular word will be followed by another word.

For a given summary, we search the resulting tree to produce 60 high-probability question-and-answer pairs. Our search algorithm ensures that we explore diverse paths through the tree, in order to generate a variety of candidate questions and answers. Then we throw out all the question-answer pairs whose answers are not sequences of words found in the summary.

Next, we feed the source text on which the summary is based to the QAGen model. We use the resulting tree to calculate the probabilities of the same question-answer pairs we extracted for the summary. When, for the source text, the probability of generating a particular question-answer pair is small compared to the probability for the summary, the QUALS will be low. Intuitively, the discrepancy suggests that the question-answer pair was plausible for the summary but not in the source text, indicating factual inconsistency.

QUALS scoring.png
Probabilities per token (words and other standalone symbols) of two different question-answer pairs, based on a summary (blue) and an input document (orange). The large probability differences for the answer in the right-hand example give it a much lower QUALS score (-2.615) than the right-hand example (-0.054).

Training methodology

The QUALS score gives us an efficiently computable measure of a summary’s factual accuracy, but using it to train a machine learning model is not straightforward. Differences in QUALS score can’t simply be back-propagated through the QAGen model to update the summarization model.

So in our paper, we propose contrastive learning as a method for using QUALS to train a summarization model. First, we train a summarization model using the standard approach, which uses maximum-likelihood estimation (MLE) to approximate a phrasal-overlap score.

Next, we use the trained model to generate new summaries for all the source texts in the training data and create two different groups of summaries. One group, S+, contains ground truth summaries that have high QUALS scores (indicating factually accurate summaries); the other, S- contains generated summaries that have low QUALS scores (indicating factually inaccurate summaries).

Finally, we retrain the summarization model, using a loss function that encourages it to generate summaries like those in S+ and discourages it from generating summaries like those in S-.

Evaluation

Sample summaries.png
Examples from the human-evaluation study, featuring input texts and summaries produced using both MLE and the ConSeq model, which is trained using QUALS.

As baselines for the evaluation of our approach, we used two models. One was trained using MLE in the standard way, to fine-tune a BART language model. For the other, we used our contrastive-learning methodology, but instead of using QUALS to evaluate summaries, we used an ensemble of three ROUGE metrics (ROUGE 1, ROUGE 2, and ROUGE L), all of which are based on phrasal overlap.

In addition to evaluating the models’ performance using QAGS, we evaluated them according to the three ROUGE metrics and FactCC, another model-based metric that simply predicts the factual consistency of two texts. On all five metrics, models trained using QUALS outperformed the two baselines.

For validation, we also conducted a human-evaluation study, which involved 100 summaries generated using QUALS and 100 summaries generated using MLE for each of two datasets (XSUM and CNNDM). Human subjects were asked to compare the summaries on three attributes: factual consistency, informativeness and grammatical correctness.

On average, annotators found the QUALS-based summaries more factually accurate and more informative than the MLE-based summaries, for both datasets. On grammatical correctness, the two models’ performance was virtually indistinguishable.

Human-study stats.png
The results of the human-evaluation study. Subjects were asked whether summaries produced using QUALS were better than, worse than, or equal to those produced using MLE, on three axes.

Related content

US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Knowledge of econometrics, as well as basic familiarity with Python (or R, Matlab, or equivalent) is necessary, and experience with SQL would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Virtual Contact Center-WA
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. About the team The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. Within the Science team, our goal is to understand the impact of changing fees on Seller (supply) and Customers (demand) behavior (e.g. price changes, advertising strategy changes, introducing new selection etc.) as well as using this information to optimize our fee structure and maximizing our long term profitability.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
This is a unique opportunity to build technology and science that millions of people will use every day. Are you excited about working on large scale Natural Language Processing (NLP), Machine Learning (ML), and Deep Learning (DL)? We are embarking on a multi-year journey to improve the shopping experience for customers globally. Amazon Search team creates customer-focused search solutions and technologies that makes shopping delightful and effortless for our customers. Our goal is to understand what customers are looking for in whatever language happens to be their choice at the moment and help them find what they need in Amazon's vast catalog of billions of products. As Amazon expands to new geographies, we are faced with the unique challenge of maintaining the bar on Search Quality due to the diversity in user preferences, multilingual search and data scarcity in new locales. We are looking for an applied researcher to work on improving search on Amazon using NLP, ML, and DL technology. As an Applied Scientist, you will lead our efforts in query understanding, semantic matching (e.g. is a drone the same as quadcopter?), relevance ranking (what is a "funny halloween costume"?), language identification (did the customer just switch to their mother tongue?), machine translation (猫の餌を注文する). This is a highly visible role with a huge impact on Amazon customers and business. As part of this role, you will develop high precision, high recall, and low latency solutions for search. Your solutions should work for all languages that Amazon supports and will be used in all Amazon locales world-wide. You will develop scalable science and engineering solutions that work successfully in production. You will work with leaders to develop a strategic vision and long term plans to improve search globally. We are growing our collaborative group of engineers and applied scientists by expanding into new areas. This is a position on Global Search Quality team in Seattle Washington. We are moving fast to change the way Amazon search works. Together with a multi-disciplinary team you will work on building solutions with NLP/ML/DL at its core. Along the way, you’ll learn a ton, have fun and make a positive impact on millions of people. Come and join us as we invent new ways to delight Amazon customers.
US, WA, Seattle
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies to deliver game changing value to our customers. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon’s Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon’s on-line retail business. As an economist on our team, you will work at the intersection of economic theory, statistical inference, and machine learning to design new methods and pricing strategies with the potential to deliver game changing value to our customers. This is an opportunity for a high-energy individual to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon’s on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon’s goods and services are aligned with Amazon’s corporate goals.
US, CA, San Francisco
The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals. We are seeking an experienced high-energy Economist to help envision, design and build the next generation of retail pricing capabilities. You will work at the intersection of statistical inference, experimentation design, economic theory and machine learning to design new methods and pricing strategies for assessing pricing innovations. Roughly 85% of previous intern cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. Key job responsibilities Amazon's Pricing Science and Research team is seeking an Economist to help envision, design and build the next generation of pricing capabilities behind Amazon's on-line retail business. As an economist on our team, you will will have the opportunity to work with our unprecedented retail data to bring cutting edge research into real world applications, and communicate the insights we produce to our leadership. This position is perfect for someone who has a deep and broad analytic background and is passionate about using mathematical modeling and statistical analysis to make a real difference. You should be familiar with modern tools for data science and business analysis. We are particularly interested in candidates with research background in experimentation design, applied microeconomics, econometrics, statistical inference and/or finance. A day in the life Discussions with business partners, as well as product managers and tech leaders to understand the business problem. Brainstorming with other scientists and economists to design the right model for the problem in hand. Present the results and new ideas for existing or forward looking problems to leadership. Deep dive into the data. Modeling and creating working prototypes. Analyze the results and review with partners. Partnering with other scientists for research problems. About the team The retail pricing science and research group is a team of scientists and economists who design and implement the analytics powering pricing for Amazon's on-line retail business. The team uses world-class analytics to make sure that the prices for all of Amazon's goods and services are aligned with Amazon's corporate goals.
US, WA, Bellevue
We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Python is necessary, and experience with SQL and UNIX would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US
The Amazon Supply Chain Optimization Technology (SCOT) organization is looking for an Intern in Economics to work on exciting and challenging problems related to Amazon's worldwide inventory planning. SCOT provides unique opportunities to both create and see the direct impact of your work on billions of dollars’ worth of inventory, in one of the world’s most advanced supply chains, and at massive scale. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. We are looking for a PhD candidate with exposure to Program Evaluation/Causal Inference. Knowledge of econometrics and Stata/R/or Python is necessary, and experience with SQL, Hadoop, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, scientists, and product managers. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of previous cohorts have converted to full time scientist employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
The Selling Partner Fees team owns the end-to-end fees experience for two million active third party sellers. We own the fee strategy, fee seller experience, fee accuracy and integrity, fee science and analytics, and we provide scalable technology to monetize all services available to third-party sellers. We are looking for an Intern Economist with excellent coding skills to design and develop rigorous models to assess the causal impact of fees on third party sellers’ behavior and business performance. As a Science Intern, you will have access to large datasets with billions of transactions and will translate ambiguous fee related business problems into rigorous scientific models. You will work on real world problems which will help to inform strategic direction and have the opportunity to make an impact for both Amazon and our Selling Partners.