The Amazon Fire TV Stick 4K is shown lying on its side
The Amazon engineers tasked with creating the Fire TV Stick 4K used world-class engineering, innovation, and collaboration to launch a stick that was powerful, compact, and cost less than $50.

How a team of engineers helped bring Amazon’s Fire TV Stick 4K to life

A behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation to overcome those challenges.

When Amazon launched its Fire TV Stick 4K in October 2018, it proved tremendously popular for three reasons. One, it delivered powerful 4K streaming with support for stellar audio (Dolby Atmos) and video specs (Dolby Vision). Two, it was a simple, compact stick. Three, it cost less than $50. The first was necessary. The second convenient. But it was the third that made all the difference.

Rewind to 2017, though, and Amazon engineers who had been tasked with creating what would become the Fire TV Stick 4K had a problem: bringing those three facets together was not possible with existing technology. What happened next was world-class engineering, innovation, and collaboration. This is a behind-the-scenes look at the unique challenges the engineering teams faced in creating the Fire TV Stick 4K, and how they used scientific research to drive fundamental innovation to overcome those challenges.

Fire TV 4K Stick engineers
From left to right, Deepak Pai, a senior wireless system engineer; Jagan Rajagopalan , senior radio frequency systems engineer; and Mohammed Azad, senior antenna design engineer, were some of the engineers who overcame serious challenges to launch the Fire TV Stick 4K.

Before the Fire TV Stick 4K launched, Amazon had other 4K streaming devices on the market, including the Fire TV pendant and Fire TV Box, but at $70 some considered these too expensive. Determined to improve value to the customer, Amazon product managers wanted to create a device that would be cost effective while delivering a quality streaming solution. They concluded that the best way to keep the materials cost low enough would be to create a small, all-in-one HDMI stick.

“The size! Initially we thought we couldn't do it at all,” recalls Deepak Pai, a senior wireless system engineer at Amazon Lab126 in Sunnyvale, California. “If you make it too big, it doesn't fit at the back of the TV. If you make it a weird shape, it's not a stick anymore.”

Noise is not an option

The critical issue that made this engineering task particularly challenging ties to the high data rate required to stream 4K video content over Wi-Fi. This data rate leaves virtually no room for error, and Amazon’s previous Fire TV Stick, which was not designed for 4K, experienced radio frequency interference (RFI) at 4K speeds, creating a patchy viewing experience.

It was crucial to resolve any interference or noise issues, so that we could deliver a reliable 4K viewing experience for our customers, without buffering issues.
Jagan Rajagopalan

This interference — a headache for electrical engineers the world over — is caused by the radio-frequency noise emitted by electronic circuits. The engineers quickly realized that, with 4K, noise is not an option. “It was crucial to resolve any interference or noise issues, so that we could deliver a reliable 4K viewing experience for our customers, without buffering issues,” says Jagan Rajagopalan, senior radio frequency systems engineer at Lab126, who led the engineering team.

But the imperative of keeping the new device below $50, and therefore using a stick form, created a big challenge. An HDMI stick, with its sensitive antennas for picking up Wi-Fi signals, sits very close to the TV, exacerbating the RFI challenge.

Previous generations of Amazon’s Fire TV streaming media sticks were designed for lower-resolution TVs, with a lower rate of data transfer, so this noise was filterable, says Rajagopalan. With 4K, however, it was a different proposition altogether. “Traditional signal-conditioning methods wouldn’t work because of the sheer speed of 4K. No noise-friendly antennas existed for a small form factor, so it was critical for us to look around the corner and innovate. We would have to mitigate RFI through fundamental invention.”

No noise is good noise

Addressing RFI in a stick was particularly challenging because of the closely located noise sources from the antenna. To better understand what was going on at the smallest scales, the team created both physical prototypes and a full 3D electromagnetic simulation model that included fine details of its mechanical aspects — such as the antenna, printed circuit boards (PCB) electronics, shielding, heat sink, and HDMI connector — as well as its all-important electrical properties.

For every Amazon product, engineering teams come together, but on this product, it was at a whole new level.
Deepak Pai

This led them to a multi-pronged approach. One aspect was to reorganize the integrated circuits in the printed circuit boards to reduce their noise emissions. Another aspect was to come up with a novel antenna design that was noise-friendly. “Other available streaming devices use conventional antennas, such as monopole antennas,” says Mohammed Azad, senior antenna design engineer at Lab126. “However, these are not noise-friendly and tend to degrade their performance in presence of noise.” The Amazon Lab126 team invented an antenna design that was noise-friendly. This was a science and engineering breakthrough because conventional antennas in small devices did not meet its design goals.

Getting this far required extensive academic research, particularly because the stick would measure just 99mm by 30mm by 14mm. “We have teams that focus on the different aspects of the device: thermal, signal integrity, power integrity, and reliability. And because this device is so small, every little design change caused cascading changes for the other teams,” says Pai. “For every Amazon product, engineering teams come together, but on this product, it was at a whole new level.”

Tight-knit team

The two key problems of device noise and TV noise were, in principle, solved, but the proof would be in the pudding. The device had to work for all TVs. So the team ensured that the prototype 4K stick worked when used with more than 100 different makes and models of TV. This rigorous testing confirmed that their proof-of-concept 4K stick had met its design goal of being able to stream 4K television to any TV. And they had done it in under six months. From there, the Amazon product managers got to work turning the prototype into the customer-ready Fire TV Stick 4K.

While the Fire TV Stick 4K story is a good example of Amazon’s obsession to provide value to its customers, it is a reminder that the ability to do so relies on the innovation and collaboration of the scientists, engineers and product managers focus on delivering best-in-class products that customers love.

Amazon has now launched a new, more powerful Fire TV Stick 4K Max streaming device, which takes antenna innovation into new era yet again, and includes support for next-generation Wi-Fi 6.

Research areas

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, Virtual
Job summaryDo you have consulting leadership experience deploying digital, data, technology strategy and execution within Fortune 500 enterprise organization? Have you built and led successful consulting practices? Do you have broad technical skills and experience across Machine Learning and Artificial Intelligence? Can you build, lead and influence machine learning engineers and data science consultants in a technical specialty team to deliver these new capabilities on the AWS platform to our enterprise customers? At AWS, we are looking for a Senior Practice Manager with a successful record of leading enterprise customers through a variety of transformative projects involving Machine Learning and Artificial Intelligence; delivering business outcomes that contribute to our customers’ transformation journey. An SPM will focus on a geography and a set of technical specialties, and will manage a team of direct reports. The SPM will develop a long-term plan to develop the right skills across the team, influence the go-to-market strategy within the region and collaborate across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based upon customer needs. Key job responsibilities• Engage customers - collaborate with enterprise sales managers to develop strong customer and partner relationships and build a growing business, driving adoption of emerging technologies in key accounts.• Coach and teach - collaborate with field sales, pre-sales, marketing, training and support teams to help partners and customers drive business outcomes through application of AI/ML.• Deliver value - lead high quality delivery of a variety of customized engagements with partners and enterprise customers in the commercial sector.• Lead great people - attract top machine learning engineers and data scientists to build high performing teams of consultants with superior technical depth, and outstanding peer and customer relationship skills• Be a customer advocate - Work with engineering teams to convey partner and enterprise customer feedback as input to technology roadmaps
US, WA, Seattle
Job summaryAWS Insight is looking for a Data Scientist to help develop sophisticated algorithms and models that involve analyzing and learning from over 540 billion customer cost, usage, and utilization events daily. We use this data to generate recommendations and forecasts for customers to help them better understand and optimize their AWS costs and usage and reduce the complexity of managing their cloud costs. Our team's vision is to be the world's authoritative provider of AWS computing insight, where customers can understand, control and optimize usage of AWS products. We sit at the nexus of all AWS services and interact directly with end-customers, and we build relationships with teams across AWS to ensure that we offer a secure and reliable customer experience that builds trust with our customers and provides them with intelligent insights.As a successful data scientist in AWS Insights, you will be responsible for understanding and mining the large amount of data, and developing recommendations that will help improve the accuracy and relevance of our forecasting and recommendations models. You will work closely with talented data scientists, software engineers, and business groups to build enhance existing models and build new models that solve challenging customer problems. You will work with the engineers to drive implementation of the proposed models and establish testing strategies to validate the models before and after they are put into production. On top of that, you are an analytical problem solver who enjoys diving into data, are excited about investigating and developing algorithms, and can influence technical teams and business stakeholders to solve real-world customer problems.Key job responsibilitiesImproving upon existing forecasting statistical or machine learning methodologies by developing new data sources, testing model enhancements, running computational experiments, and fine-tuning model parameters for new forecasting modelsSupporting decision making by providing requirements to develop analytic capabilities, platforms, pipelines and metrics then using them to analyze trends and find root causes of forecast inaccuracyFormalizing assumptions about how demand forecasts are expected to behave, creating definitions of outliers, developing methods to systematically identify these outliers, and explaining why they are reasonable or identifying fixes for themTranslating forecasting business requirements into specific analytical questions that can be answered with available data using statistical and machine learning methods; working with engineers to produce the required data when it is not availableCommunicating verbally and in writing to business customers with various levels of technical knowledge, educating them about our systems, as well as sharing insights and recommendationsUtilizing code (Python, R, Scala, etc.) for analyzing data and building statistical and machine learning models and algorithms
US, Virtual
Job summaryIn the Amazon Selection Monitoring team, we have the goal of establishing the most comprehensive, accurate and fresh universal selection of products. We enrich and increase the quality and coverage of Amazon product selection using cutting edge machine learning and big data technologies. We are looking for highly motivated scientists who can lead the design, development, deployment and maintenance of data-driven models using machine learning (ML) and/or natural language (NL) and computer vision (CV) applications. Your models would be monitoring billions and billions of products. You will build Amazon scale applications running on Amazon Web Service (AWS) that both leverage and create new technologies to process large volumes of data that derive patterns and conclusions from the data. Amazon Science gives you insight into the company’s approach to customer-obsessed scientific innovation. Amazon fundamentally believes that scientific innovation is essential to being the most customer-centric company in the world. It’s the company’s ability to have an impact at scale that allows us to attract some of the brightest minds in artificial intelligence and related fields. Our scientists continue to publish, teach, and engage with the academic community, in addition to utilizing our working backwards method to enrich the way we live and work. Please visit https://www.amazon.science for more information. Responsibilities - Designing and implementing new features and machine learned models, including the application of state-of-art deep learning to solve search matching and ranking problems, including filtering, new content indexing, and apply document understandingConducting and coordinating process development leading to improved and streamlined processes for model development. Strong customer focus is essentialWorking closely with Product Managers to expand depth of our product insights with data, create a variety of experiments, and determine the highest-impact projects to include in planning roadmapsProviding technical and scientific guidance to your team membersCommunicating effectively with senior management as well as with colleagues from science, engineering, and business backgroundsBeing a cultural leader that ensures teams are collecting, understanding, and using data to inform every decision that impacts our customers The successful candidate will have an established background in developing customer-facing experiences, a strong technical ability, a start-up mentality, excellent project management skills, and great communication skills.Key job responsibilitiesDesigning and implementing new features and machine learned models, including the application of state-of-art deep learning to solve search matching and ranking problems, including filtering, new content indexing, and apply document understandingConducting and coordinating process development leading to improved and streamlined processes for model development. Strong customer focus is essentialWorking closely with Product Managers to expand depth of our product insights with data, create a variety of experiments, and determine the highest-impact projects to include in planning roadmapsProviding technical and scientific guidance to your team membersCommunicating effectively with senior management as well as with colleagues from science, engineering, and business backgroundsBeing a cultural leader that ensures teams are collecting, understanding, and using data to inform every decision that impacts our customersA day in the lifeYou will work with Product Managers to translate the business problem into a science problemYou will define methods for data collection and performance evaluationYou will experiment new models and evaluate their performanceYou will perform deep dive to understand potential issues impacting model performance, and form hypotheses for improvementYou will help deploy the model into productionYou will communicate your experimental and production result to Product Managers and business stakeholders
US, Virtual
Job summaryThe AWS Activate Program provides startups the resources they need to grow successfully on AWS. We do this by understanding the uniqueness of each and every startup that applies for Activate, and then personalizing the resources we make available to them. Our resources include (but are not limited to) AWS service credits, Business Support credits, technical education and training, opportunities for business and technical mentorship from Amazonians and startup peers, and personalized growth benefits. The Activate Personalization Team is the brains behind the Activate system. This team is responsible for ingesting startup data from multiple internal and external services, aggregating it into a holistic startup profile, and creating and productionizing ML models. Our team is looking for an experienced Data Scientist (DS) with outstanding leadership skills and the proven ability to build and manage medium-scale modeling projects. The candidate will be an expert across multiple data science domains including data transformation, machine learning, and statistics. Key job responsibilitiesResearch cutting edge algorithms, develop new models, and design and run experiments to improve customer personalizationPartner with scientists, engineers and product leaders to solve business and technology problems using scientific approaches to build new services that surprise and delight our customersCollaborate with BI/Data Engineer teams and drive the collection of new data and the refinement of existing data sources to continually improve data qualityPropose and validate hypothesis to deliver and direct our product road mapConstructively critique peer research and mentor junior scientists and engineers
US, NY, New York
Job summaryWe are open to candidates located in:Seattle, WashingtonPalo Alto, CaliforniaArlington, VirginiaKey job responsibilitiesAs a Senior Research Scientist, you will:Research and develop new methodologies for demand forecasting, alarms, alerts and automation.Apply your advanced data analytics, machine learning skills to solve complex demand planning and allocation problems.Work closely with stakeholders and translate data-driven findings into actionable insights.Improve upon existing methodologies by adding new data sources and implementing model enhancements.Create and track accuracy and performance metrics.Create, enhance, and maintain technical documentation, and present to other scientists, engineers and business leaders.Drive best practices on the team; mentor and guide junior members to achieve their career growth potential.A day in the lifeAbility to utilize exceptional modeling and problem-solving skills to work through different challenges in ambiguous situations.You’ve successfully delivered end-to-end operations research projects, working through conflicting viewpoints and data limitations.You have an enviable level of attention to details.Ability to communicate analytical results to senior leaders, and peers.Innovative scientist with the ability to identify opportunities and develop novel modeling approaches in a fast-paced and ever-changing environment, and gain support with data and storytelling.About the teamVideo advertising is a complex, multi-sided market with many technologies at play within the industry. The industry is rapidly growing and evolving as viewers are shifting from traditional TV viewing to OTT, and from terrestrial radio to streaming. In addition, publishers are increasingly adding video content to their online experiences. Amazon’s video advertising program is a rising competitor in this industry. Amazon’s service has differentiated assets in our customer & audience insights, exclusive video content and associated inventory on our streaming services (IMDbTV, Twitch, Prime Video, Amazon Music, etc.) and devices (FireTV, Echo, Fire Tablet) which all position us well as an end to end service for advertisers and agencies. As our business grows, we are continually experimenting with a portfolio of emerging ideas and technology as well as global expansion. We are looking for passionate, hard-working, and talented individuals to help foster these nascent ideas into scalable products and launch them into the market.