Screenshot shows a portion of the what should I watch experience
The new What Should I Watch (WSIW) experience, released in mid-September, combines Alexa AI and Fire TV recommendations to turn Alexa into an entertainment expert who provides relevant suggestions with a conversational customer experience.

The science behind the new “Alexa, what should I watch?” Fire TV experience

The phrase launches a feature built to help customers navigate an increasingly complex and diverse world of content.

"What should I watch?"

In an entertainment universe filled with a rapidly expanding catalog of shows across myriad channels and apps, this might be one of the most common questions to pop up in many households. And if you are among those who have trouble keeping up with all the latest shows and pinpointing which ones are worth your time, you are not alone.

In fact, more than half of respondents in a recent survey from the consulting firm Deloitte found it difficult to access content across multiple services, and 49% were frustrated if a service failed to provide them with good recommendations. Viewers find themselves surfing … and surfing. It takes the average smart TV owner 12 minutes to land on a show, according to a 2020 survey by Tivo — and for some viewers that can take up to half an hour.

"It's kind of shocking how much time customers have to spend on finding content instead of just sitting down on the couch and jumping into a TV show or a movie that they really enjoy," said Cosmin Laslau, a technical program manager who works on spoken language understanding as part of the Amazon Alexa Entertainment team. "We wanted to leverage new technology to help solve that problem for customers."

Image shows the new Fire TV Cube, left, the Fire TV Omni QLED Series, middle, and the Alexa Voice Remote Pro, right
The What Should I Watch experience works with many Fire TV devices, including the new Fire TV Cube, left, the Fire TV Omni QLED Series, middle, and the Alexa Voice Remote Pro announced at the 2022 Devices and Services event.

The team did that by launching What Should I Watch (WSIW). The new experience, released in mid-September, combines Alexa AI and Fire TV recommendations to turn Alexa into an entertainment expert who provides relevant suggestions with a conversational customer experience. The experience also works with the new Fire TV Cube, the Fire TV Omni QLED Series, and the Alexa Voice Remote Pro announced at the 2022 Devices and Services event.

“We built WSIW to rapidly experiment with new Alexa technologies and push the envelope on discovery experiences to address the core customer need to find something interesting to watch,” explained Parthasarathi Dutta Sharma, a product manager who helped bring WSIW to customers.

WSIW displays personalized recommendations when customers ask, “Alexa, what should I watch?” or a variant of that phrase. Customers can then customize the recommendations using voice prompts (for example, “just the ones that are free to me”) or by using their remote to select filters on the screen, watch trailers, view additional information (eg genre, ratings), and initiate playback.

Related content
Rohit Prasad on the pathway to generalizable intelligence and what excites him most about his re:MARS keynote.

The experience combines innovation for both Fire TV, with its extensive catalog, search and recommendation features, and the conversational AI that drives Alexa.

"We wanted to layer on these new innovations that have been developed around Alexa Conversations specifically," Laslau said. "We've given customers a broad range of natural ways to interact with Alexa, without being limited to a single utterance."

Since previewing WSIW last fall and beginning beta testing with customers, teams have worked to refine the customer experience.

“We used beta testing to closely observe how customers interacted with WSIW and to validate our core hypotheses on what works for customers,” explained Dutta Sharma. “A prime hypothesis we validated was viewers naturally gravitate to using natural language, with variability in inputs, while interacting with Alexa.”

Related content
Dialogue simulator and conversations-first modeling architecture provide ability for customers to interact with Alexa in a natural and conversational manner.

For example, to customize recommendations, the team found that initially customers might say, “I am in the mood for something funny”. They would then follow that by asking, “Which of these are on Prime Video?” or simply stating, “free to me”. So, the team worked to ensure WSIW could support those types of interactions with Alexa. It proved to be a feature customers responded to enthusiastically.

The team also responded to early feedback by introducing more gradual introductions to autoplay trailers and swapped an intro video on how to use the WSIW feature with on-screen contextual hints.

“Another insight was that customers wanted to be able to view only the titles they were already entitled to — versus those for rent or purchase — so we added a permanent free-to-me filter. Customers routinely call that out as a highlight,” Dutta Sharma said.

Building AI for the entertainment space

The What Should I Watch experience builds upon existing Alexa natural language understanding and automatic speech recognition capabilities.

"But bringing natural conversation to the entertainment domain has its own set of unique challenges," Laslau explained. Maybe a show, like The Boys or The Expanse, is ambiguously named, or a movie starts to trend that wasn't in the catalog a week or two ago. Optimizing the feature required combining core advances in AI around natural, multi-turn conversations with a fast-changing catalog.

"We are making sure those natural conversations are intelligent enough to reflect the very latest of what's happening in entertainment," he said.

The team also worked to ensure a mix of personalization based on your preferences— those British detective series you always gravitate toward — and something new that you might not have seen otherwise.

They did this by customizing Fire TV's existing recommender technology, mixing personalization with popular titles and randomizing subsets of these lists so that viewers encounter fresh ideas each time they turn on the TV.

A flywheel effect on innovation

The deep-learning-based Alexa Conversations makes it far simpler to develop the thousands of potential dialogue turns that a “What Should I Watch?” utterance might generate.

Alexa Conversations comprises three models: entity recognition (identifying Tom Cruise as an actor, for example), action prediction (utilizing the “movie searching” API to find movies), and argument filling (indicating the movies to be those with Tom Cruise).

“Alexa Conversations is designed to reduce the burden on developers, generating variations of dialogue automatically. The team has added several new features recently,” said Jiun-Yu Kao, an applied scientist within the Alexa AI Natural Understanding organization.

The WSIW experience is the first to launch with enhanced understanding of screen context.
Jiun-Yu Kao

Those include conversational Q&A which allow customers to ask broad questions about the recommended titles, such as which movies won an Oscar; a context reset function that allows a user to "start over" with a blank slate; and visual context, which enhances Alexa’s ability to respond correctly when a viewer says something like, "play the one on the left,” referencing what’s on the screen instead of naming the movie title.

“The WSIW experience is the first to launch with enhanced understanding of screen context,” Kao said. “It is also the first to combine all above-listed features for improved customer experience.”

Alexa and Fire TV science, engineering, and product teams collaborated to build the different components of the new feature.

Related content
A behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation to overcome those challenges.

“What’s super cool is that we are tapping into so many different services in parts of Alexa and Fire TV,” said Carlos Mattoso, a Fire TV software development engineer. “We are using a lot of the domain knowledge and capabilities that Fire TV has built around the recommendation space, for instance. But where we do that, we’re also trying to raise the bar: How can we use the information we’re gleaning from usage of What Should I Watch back into the system so that we have this flywheel that continuously improves?”

Mattoso noted that work with the Alexa team enabled not just suggestions but new in-context commands for Fire TV playback and volume changes, for example, that weren’t previously available.

“For instance, when we were building the first beta, we did not really have a way of initiating playback of a title from within an Alexa skill for Fire TV,” he explained. “So, we worked together with the Alexa Video team to extend the existing capability and then add support for that feature so that we could use it on WSIW.”

Looking ahead

Teams continue to work on making What Should I Watch faster and smarter.

One possibility is for users to explicitly guide Alexa by saying something like, "I'm a big sci-fi fan," or "I don't like horror movies." This type of interaction represents an opportunity for Alexa to adapt to customer engagement preferences, with some preferring to guide the service directly, and others wanting to lean back and take in recommendations.

As collaboration on the experience continues, both Alexa and Fire TV are becoming more capable. That could have a broader effect, particularly for the Alexa skill development community.

“We’re really trying to raise the bar,” Mattoso said, “and the capabilities we develop may eventually benefit third-party skill developers. Those might include improved long-term memory, better context resetting, and better visual context understanding.”

Research areas

Related content

US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in a research engineering role: running experiments, building tools to accelerate scientific workflows, and scaling up AI systems. Key responsibilities include: * Design, maintain, and enhance tools and workflows that support cutting-edge research * Adapt quickly to evolving research priorities and team needs * Stay informed on the latest advancements in large language models and related research * Collaborate closely with researchers to develop new techniques and tools around emerging agent capabilities * Drive project execution, including scoping, prioritization, timeline management, and stakeholder communication * Thrive in a fast-paced, iterative environment, delivering high-quality software on tight schedules * Apply strong software engineering fundamentals to produce clean, reliable, and maintainable code About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, MA, Boston
AI is the most transformational technology of our time, capable of tackling some of humanity’s most challenging problems. That is why Amazon is investing in generative AI (GenAI) and the responsible development and deployment of large language models (LLMs) across all of our businesses. Come build the future of human-technology interaction with us. We are looking for an Applied Scientist with strong technical skills which includes coding and natural language processing experience in dataset construction, training and evaluating models, and automatic processing of large datasets. You will play a critical role in driving innovation and advancing the state-of-the-art in natural language processing and machine learning. You will work closely with cross-functional teams, including product managers, language engineers, and other scientists. Key job responsibilities Specifically, the Applied Scientist will: • Ensure quality of speech/language/other data throughout all stages of acquisition and processing, including data sourcing/collection, ground truth generation, normalization, transformation, cross-lingual alignment/mapping, etc. • Clean, analyze and select speech/language/other data to achieve goals • Build and test models that elevate the customer experience • Collaborate with colleagues from science, engineering and business backgrounds • Present proposals and results in a clear manner backed by data and coupled with actionable conclusions • Work with engineers to develop efficient data querying infrastructure for both offline and online use cases
US, NY, New York
Do you want to leverage your expertise in translating innovative science into impactful products to improve the lives and work of over a million people worldwide? If so, People eXperience Technology Central Science (PXTCS) would love to discuss how you can make that a reality. PXTCS is an interdisciplinary team that uses economics, behavioral science, statistics, and machine learning to identify products, mechanisms, and process improvements that enhance Amazonians' well-being and their ability to deliver value for Amazon's customers. We collaborate with HR teams across Amazon to make Amazon PXT the most scientific human resources organization in the world. In this role, you will spearhead science design and technical implementation innovations across our predictive modeling and forecasting work-streams. You'll enhance existing models and create new ones, empowering leaders throughout Amazon to make data-driven business decisions. You'll collaborate with scientists and engineers to deliver solutions while working closely with business stakeholders to address their specific needs. Your work will span various business domains (corporate, operations, safety) and analysis levels (individual, group, organizational), utilizing a range of modeling approaches (linear, tree-based, deep neural networks, and LLM-based). You'll develop end-to-end ML solutions from problem formulation to deployment, maintaining high scientific standards and technical excellence throughout the process. As a Sr. Applied Scientist, you'll also contribute to the team's science strategy, keeping pace with emerging AI/ML trends. You'll mentor junior scientists, fostering their growth by identifying high-impact opportunities. Your guidance will span different analysis levels and modeling approaches, enabling stakeholders to make informed, strategic decisions. If you excel at building advanced scientific solutions and are passionate about developing technologies that drive organizational change in the AI era, join us as we work hard, have fun, and make history.
US, NY, New York
We are seeking a motivated and talented Applied Scientist to join our team at Amazon Advertising, where we are on a mission to make Amazon the best in class destination for shoppers to discover, engage and build affinity with brands, making shopping beautiful, delightful, and personal. Our team builds the central Brand Understanding foundation for Amazon ads and beyond. We focus on enabling the Amazon brand ads businesses to align the customer's brand shopping intent with the brand's unique value (e.g., intelligent query/shopper-to-brand understanding, brand value/differentiator attribute extraction, and brand profile building). We provide large-scale offline and online Brand Understanding data services, powered by the latest Machine Learning technologies (e.g., Large Language Models, Multi-Modal Deep Neural Networks, Statistical Modeling). We also enable customer-brand engagement enhancement through intelligent UX and efficient ads serving. About Amazon Advertising: Amazon Advertising operates at the intersection of eCommerce and advertising, offering a rich array of digital display advertising solutions with the goal of helping our customers find and discover anything they want to buy. We help advertisers of all types to reach Amazon customers on Amazon.com, across our other owned and operated sites, on other high quality sites across the web, and on millions of mobile devices. We start with the customer and work backwards in everything we do, including advertising. If you’re interested in joining a rapidly growing team working to build a unique, world-class advertising group with a relentless focus on the customer, you’ve come to the right place. Key job responsibilities - Leverage Large Language Models (LLMs) and transformer-based models, and apply machine learning and natural language understanding techniques to improve the shopper and advertiser experience at Amazon. - Perform hands-on data analysis and modeling with large data sets to develop insights. - Run A/B experiments, evaluate the impact of your optimizations and communicate your results to various business stakeholders - Work closely with product managers and software engineers to design experiments and implement end-to-end solutions - Be a member of the Amazon-wide machine learning community, participating in internal and external hackathons and conferences - Help attract and recruit technical talent
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
US, CA, Sunnyvale
As a Principal Scientist in the Artificial General Intelligence (AGI) organization, you are a trusted part of the technical leadership. You bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. You solicit differing views across the organization and are willing to change your mind as you learn more. Your artifacts are exemplary and often used as reference across organization. You are a hands-on scientific leader. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions. You amplify your impact by leading scientific reviews within your organization or at your location. You scrutinize and review experimental design, modeling, verification and other research procedures. You probe assumptions, illuminate pitfalls, and foster shared understanding. You align teams toward coherent strategies. You educate, keeping the scientific community up to date on advanced techniques, state of the art approaches, the latest technologies, and trends. You help managers guide the career growth of other scientists by mentoring and play a significant role in hiring and developing scientists and leads. You will play a critical role in driving the development of Generative AI (GenAI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities You will be responsible for defining key research directions, adopting or inventing new machine learning techniques, conducting rigorous experiments, publishing results, and ensuring that research is translated into practice. You will develop long-term strategies, persuade teams to adopt those strategies, propose goals and deliver on them. You will also participate in organizational planning, hiring, mentorship and leadership development. You will be technically exceptional with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance).