Screenshot shows a portion of the what should I watch experience
The new What Should I Watch (WSIW) experience, released in mid-September, combines Alexa AI and Fire TV recommendations to turn Alexa into an entertainment expert who provides relevant suggestions with a conversational customer experience.

The science behind the new “Alexa, what should I watch?” Fire TV experience

The phrase launches a feature built to help customers navigate an increasingly complex and diverse world of content.

"What should I watch?"

In an entertainment universe filled with a rapidly expanding catalog of shows across myriad channels and apps, this might be one of the most common questions to pop up in many households. And if you are among those who have trouble keeping up with all the latest shows and pinpointing which ones are worth your time, you are not alone.

In fact, more than half of respondents in a recent survey from the consulting firm Deloitte found it difficult to access content across multiple services, and 49% were frustrated if a service failed to provide them with good recommendations. Viewers find themselves surfing … and surfing. It takes the average smart TV owner 12 minutes to land on a show, according to a 2020 survey by Tivo — and for some viewers that can take up to half an hour.

"It's kind of shocking how much time customers have to spend on finding content instead of just sitting down on the couch and jumping into a TV show or a movie that they really enjoy," said Cosmin Laslau, a technical program manager who works on spoken language understanding as part of the Amazon Alexa Entertainment team. "We wanted to leverage new technology to help solve that problem for customers."

Image shows the new Fire TV Cube, left, the Fire TV Omni QLED Series, middle, and the Alexa Voice Remote Pro, right
The What Should I Watch experience works with many Fire TV devices, including the new Fire TV Cube, left, the Fire TV Omni QLED Series, middle, and the Alexa Voice Remote Pro announced at the 2022 Devices and Services event.

The team did that by launching What Should I Watch (WSIW). The new experience, released in mid-September, combines Alexa AI and Fire TV recommendations to turn Alexa into an entertainment expert who provides relevant suggestions with a conversational customer experience. The experience also works with the new Fire TV Cube, the Fire TV Omni QLED Series, and the Alexa Voice Remote Pro announced at the 2022 Devices and Services event.

“We built WSIW to rapidly experiment with new Alexa technologies and push the envelope on discovery experiences to address the core customer need to find something interesting to watch,” explained Parthasarathi Dutta Sharma, a product manager who helped bring WSIW to customers.

WSIW displays personalized recommendations when customers ask, “Alexa, what should I watch?” or a variant of that phrase. Customers can then customize the recommendations using voice prompts (for example, “just the ones that are free to me”) or by using their remote to select filters on the screen, watch trailers, view additional information (eg genre, ratings), and initiate playback.

Related content
Rohit Prasad on the pathway to generalizable intelligence and what excites him most about his re:MARS keynote.

The experience combines innovation for both Fire TV, with its extensive catalog, search and recommendation features, and the conversational AI that drives Alexa.

"We wanted to layer on these new innovations that have been developed around Alexa Conversations specifically," Laslau said. "We've given customers a broad range of natural ways to interact with Alexa, without being limited to a single utterance."

Since previewing WSIW last fall and beginning beta testing with customers, teams have worked to refine the customer experience.

“We used beta testing to closely observe how customers interacted with WSIW and to validate our core hypotheses on what works for customers,” explained Dutta Sharma. “A prime hypothesis we validated was viewers naturally gravitate to using natural language, with variability in inputs, while interacting with Alexa.”

Related content
Dialogue simulator and conversations-first modeling architecture provide ability for customers to interact with Alexa in a natural and conversational manner.

For example, to customize recommendations, the team found that initially customers might say, “I am in the mood for something funny”. They would then follow that by asking, “Which of these are on Prime Video?” or simply stating, “free to me”. So, the team worked to ensure WSIW could support those types of interactions with Alexa. It proved to be a feature customers responded to enthusiastically.

The team also responded to early feedback by introducing more gradual introductions to autoplay trailers and swapped an intro video on how to use the WSIW feature with on-screen contextual hints.

“Another insight was that customers wanted to be able to view only the titles they were already entitled to — versus those for rent or purchase — so we added a permanent free-to-me filter. Customers routinely call that out as a highlight,” Dutta Sharma said.

Building AI for the entertainment space

The What Should I Watch experience builds upon existing Alexa natural language understanding and automatic speech recognition capabilities.

"But bringing natural conversation to the entertainment domain has its own set of unique challenges," Laslau explained. Maybe a show, like The Boys or The Expanse, is ambiguously named, or a movie starts to trend that wasn't in the catalog a week or two ago. Optimizing the feature required combining core advances in AI around natural, multi-turn conversations with a fast-changing catalog.

"We are making sure those natural conversations are intelligent enough to reflect the very latest of what's happening in entertainment," he said.

The team also worked to ensure a mix of personalization based on your preferences— those British detective series you always gravitate toward — and something new that you might not have seen otherwise.

They did this by customizing Fire TV's existing recommender technology, mixing personalization with popular titles and randomizing subsets of these lists so that viewers encounter fresh ideas each time they turn on the TV.

A flywheel effect on innovation

The deep-learning-based Alexa Conversations makes it far simpler to develop the thousands of potential dialogue turns that a “What Should I Watch?” utterance might generate.

Alexa Conversations comprises three models: entity recognition (identifying Tom Cruise as an actor, for example), action prediction (utilizing the “movie searching” API to find movies), and argument filling (indicating the movies to be those with Tom Cruise).

“Alexa Conversations is designed to reduce the burden on developers, generating variations of dialogue automatically. The team has added several new features recently,” said Jiun-Yu Kao, an applied scientist within the Alexa AI Natural Understanding organization.

The WSIW experience is the first to launch with enhanced understanding of screen context.
Jiun-Yu Kao

Those include conversational Q&A which allow customers to ask broad questions about the recommended titles, such as which movies won an Oscar; a context reset function that allows a user to "start over" with a blank slate; and visual context, which enhances Alexa’s ability to respond correctly when a viewer says something like, "play the one on the left,” referencing what’s on the screen instead of naming the movie title.

“The WSIW experience is the first to launch with enhanced understanding of screen context,” Kao said. “It is also the first to combine all above-listed features for improved customer experience.”

Alexa and Fire TV science, engineering, and product teams collaborated to build the different components of the new feature.

Related content
A behind-the-scenes look at the unique challenges the engineering teams faced, and how they used scientific research to drive fundamental innovation to overcome those challenges.

“What’s super cool is that we are tapping into so many different services in parts of Alexa and Fire TV,” said Carlos Mattoso, a Fire TV software development engineer. “We are using a lot of the domain knowledge and capabilities that Fire TV has built around the recommendation space, for instance. But where we do that, we’re also trying to raise the bar: How can we use the information we’re gleaning from usage of What Should I Watch back into the system so that we have this flywheel that continuously improves?”

Mattoso noted that work with the Alexa team enabled not just suggestions but new in-context commands for Fire TV playback and volume changes, for example, that weren’t previously available.

“For instance, when we were building the first beta, we did not really have a way of initiating playback of a title from within an Alexa skill for Fire TV,” he explained. “So, we worked together with the Alexa Video team to extend the existing capability and then add support for that feature so that we could use it on WSIW.”

Looking ahead

Teams continue to work on making What Should I Watch faster and smarter.

One possibility is for users to explicitly guide Alexa by saying something like, "I'm a big sci-fi fan," or "I don't like horror movies." This type of interaction represents an opportunity for Alexa to adapt to customer engagement preferences, with some preferring to guide the service directly, and others wanting to lean back and take in recommendations.

As collaboration on the experience continues, both Alexa and Fire TV are becoming more capable. That could have a broader effect, particularly for the Alexa skill development community.

“We’re really trying to raise the bar,” Mattoso said, “and the capabilities we develop may eventually benefit third-party skill developers. Those might include improved long-term memory, better context resetting, and better visual context understanding.”

Research areas

Related content

US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Senior Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field or relevant science experience (publications/scientific prototypes) in lieu of Masters - Experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment - Papers published in AI/ML venues of repute
IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 2-7 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, WA, Bellevue
Our mission is to provide consistent, accurate, and relevant delivery information to every single page on every Amazon-owned site. MILLIONS of customers will be impacted by your contributions: The changes we make directly impact the customer experience on every Amazon site. This is a great position for someone who likes to leverage Machine learning technologies to solve the real customer problems, and also wants to see and measure their direct impact on customers. We are a cross-functional team that owns the ENTIRE delivery experience for customers: From the business requirements to the technical systems that allow us to directly affect the on-site experience from a central service, business and technical team members are integrated so everyone is involved through the entire development process. You will have a chance to develop the state-of-art machine learning, including deep learning and reinforcement learning models, to build targeting, recommendation, and optimization services to impact millions of Amazon customers. Do you want to join an innovative team of scientists and engineers who use machine learning and statistical techniques to deliver the best delivery experience on every Amazon-owned site? Are you excited by the prospect of analyzing and modeling terabytes of data on the cloud and create state-of-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you like to innovate and simplify? If yes, then you may be a great fit to join the DEX AI team. Key job responsibilities - Research and implement machine learning techniques to create scalable and effective models in Delivery Experience (DEX) systems - Solve business problems and identify business opportunities to provide the best delivery experience on all Amazon-owned sites. - Design and develop highly innovative machine learning and deep learning models for big data. - Build state-of-art ranking and recommendations models and apply to Amazon search engine. - Analyze and understand large amounts of Amazon’s historical business data to detect patterns, to analyze trends and to identify correlations and causalities - Establish scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation
IN, KA, Bengaluru
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The ATT team, based in Bangalore, is responsible for ensuring that ads are relevant and is of good quality, leading to higher conversion for the sellers and providing a great experience for the customers. We deal with one of the world’s largest product catalog, handle billions of requests a day with plans to grow it by order of magnitude and use automated systems to validate tens of millions of offers submitted by thousands of merchants in multiple countries and languages. In this role, you will build and develop ML models to address content understanding problems in Ads. These models will rely on a variety of visual and textual features requiring expertise in both domains. These models need to scale to multiple languages and countries. You will collaborate with engineers and other scientists to build, train and deploy these models. As part of these activities, you will develop production level code that enables moderation of millions of ads submitted each day.