Rohit re-MARS.png
Alexa AI senior vice president and head scientist Rohit Prasad onstage at re:MARS 2022.

Alexa's head scientist on conversational exploration, ambient AI

Rohit Prasad on the pathway to generalizable intelligence and what excites him most about his re:MARS keynote.

In a talk today at re:MARS — Amazon’s conference on machine learning, automation, robotics, and space — Rohit Prasad, Alexa AI senior vice president and head scientist, discussed the emerging paradigm of ambient intelligence, in which artificial intelligence is everywhere around you, responding to requests and anticipating your needs, but fading into the background when you don’t need it. Ambient intelligence, Prasad argued, offers the most practical route to generalizable intelligence, and the best evidence for that is the difference that Alexa is already making in customers’ lives.

Amazon Science caught up with Prasad to ask him a few questions about his talk.

  1. Q. 

    What is ambient intelligence?

    A. 

    Ambient intelligence is artificial intelligence [AI] that is embedded everywhere in our environment. It is both reactive, responding to explicit customer requests, and proactive, anticipating customer needs. It uses a broad range of sensing technologies, like sound, vision, ultrasound, atmospheric sensing like temperature and humidity, depth sensors, and mechanical sensors, and it takes actions, playing your favorite tune, looking up information, buying products you need, or controlling thermostats, lights, or blinds in your smart home.

    Related content
    Reducing false positives for rare events, adapting Echo hardware to ultrasound sensing, and enabling concurrent ultrasound sensing and music playback are just a few challenges Amazon researchers addressed.

    Ambient intelligence is best exemplified by AI services like Alexa, which we use on a daily basis. Customers interact with Alexa billions of times each week. And thanks to predictive and proactive features like Hunches and Routines, more than 30% of smart-home interactions are initiated by Alexa.

  2. Q. 

    Why does ambient intelligence offer the most practical route to generalizable intelligence?

    A. 

    Alexa is made up of more than 30 machine learning systems that can each process different sensory signals. The real-time orchestration of these sophisticated machine learning systems makes Alexa one of the most complex applications of AI in the world.

    30+ ML systems.cropped.png
    Alexa is made up of more than 30 machine learning systems that process different sensory signals.

    Still, our customers demand even more from Alexa as their personal assistant, advisor, and companion. To continue to meet customer expectations, Alexa can’t just be a collection of special-purpose AI modules. Instead, it needs to be able to learn on its own and to generalize what it learns to new contexts. That’s why the ambient-intelligence path leads to generalizable intelligence.

    Generalizable intelligence [GI] doesn’t imply an all-knowing, all-capable, über AI that can accomplish any task in the world. Our definition is more pragmatic, with three key attributes: a GI agent can (1) accomplish multiple tasks; (2) rapidly evolve to ever-changing environments; and (3) learn new concepts and actions with minimal external human input. For inspiration for such intelligence, we don’t need to look far: we humans are still the best example of generalization and the standard for AI to aspire to.

    Related content
    Self-learning system uses customers’ rephrased requests as implicit error signals.

    We’re already seeing some of this today, with AI generalizing much better than ever before. Foundational Transformer-based large language models trained with self-supervision are powering many tasks with significantly less manually labeled data than was required before. For example, our large language model pretrained on Alexa interactions — the Alexa Teacher Model — captures knowledge that is used in language understanding, dialogue prediction, speech recognition, and even visual-scene understanding. We have also proven that models trained on multiple languages often outperform single-language models.

    Another element of better generalization is learning with little or no human involvement. Alexa’s self-learning mechanism is automatically correcting tens of millions of defects — both customer errors and errors in Alexa’s language-understanding models — each week. Customers can teach Alexa new behaviors, and Alexa can automatically generalize them across contexts — learning, for instance, that terms used to describe lighting settings can also be applied to speaker settings.

  3. Q. 

    Generalizing across contexts and reliably predicting customer needs will require more common sense than most AI systems exhibit today. How does common sense fit in to this picture?

    A. 

    To begin with, Alexa already exhibits common sense in a number of areas. For example, if you say to Alexa, “Set a reminder for the Super Bowl”, Alexa not only identifies the Super Bowl date and time but converts it into the customer’s time zone and reminds the customer 10 minutes before the start of the game, so they can wrap up what they are doing and get ready to watch the game.

    Related content
    A machine learning model learns representations that cluster devices according to their usage patterns.

    Another example is suggested Routines, where Alexa detects frequent customer interaction patterns and proactively suggests automating them via a Routine. So if someone frequently asks Alexa to turn on the lights and turn up the heat at 7:00 a.m., Alexa might suggest a Routine that does that automatically.

    Even if the customer didn’t set up a Routine, Alexa can detect anomalies as part of its Hunches feature. For example, Alexa can alert you about the garage door being left open at 9:00 p.m., if it's usually closed at that time.

    Moving forward, we are aspiring to take automated reasoning to a whole new level. Our first goal is the pervasive use of commonsense knowledge in conversational AI. As part of that effort, we have collected and publicly released the largest dataset for social common sense in an interactive setting.

    We have also invented a generative approach that we call think-before-you-speak. In this approach, the AI learns to first externalize implicit commonsense knowledge — that is, “think” — using a large language model combined with a commonsense knowledge graph such as ConceptNet. Then it uses this knowledge to generate responses — that is, to “speak”.

    Think-before-you-speak.cropped.png
    An overview of the think-before-you-speak approach.

    For example, if during a social conversation on Valentine’s day a customer says, “Alexa, I want to buy flowers for my wife”, Alexa can leverage world knowledge and temporal context to respond with “Perhaps you should get her red roses”.

    We’re also working to enable Alexa to answer complex queries that require multiple inference steps. For example, if a customer asks, "Has Austria won more skiing medals than Norway?", Alexa needs to combine the mention of skiing medals with temporal context to infer that the customer is asking about the Winter Olympics. Then Alexa needs to resolve “skiing” to the set of Winter Olympics events that involve skiing, which is not trivial, since those events can have names like “Nordic combined” and “biathlon”. Next, Alexa needs to retrieve and aggregate medal counts for each country and, finally, compare results.

    Skiing medals.cropped.png
    The Alexa AI team is working to enable Alexa to answer complex queries that require multiple inference steps.

    A key requirement for responding to such questions is explainability. Alexa shouldn't just reply "yes" but provide a response that summarizes Alexa's inference steps, such as "Norway has won X medals in skiing events in the Winter Olympics, which is Y more than Austria".

  4. Q. 

    What’s the one thing you are most excited about from your re:MARS keynote?

    A. 

    If I had to pick one thing among the suite of capabilities we showed at re:MARS, I’d say it is conversational explorations. Through the years, we have made Alexa far more knowledgeable, and it has gained expertise in many domains of information to answer natural-language queries from customers.

    Related content
    Replacing hand annotation with a machine learning component reduces labor, while an intersection operation enables multiple-entity queries.

    Now, we are taking such question answering to the next level. We are enabling conversational explorations on ambient devices, so you don’t have to pull out your phone or go to your laptop to explore information on the web. Instead, Alexa guides you on your topic of interest, distilling a wide variety of information available on the web and shifting the heavy lifting of researching content from you to Alexa.

    The idea is that when you ask Alexa a question — about a news story you’re following, a product you’re interested in, or, say, where to hike — the response includes specific information to help you make a decision, such as an excerpt from a product review. If that initial response gives you enough information to make a decision, great. But if it doesn’t — if, for instance, you ask for other options — that’s information that Alexa can use to sharpen its answer to your question or provide helpful suggestions.

    Making this possible required three different types of advances. One is in dialogue flow prediction through deep learning in Alexa Conversations. The second is web-scale neural information retrieval to match relevant information to customer queries. And the third is automated summarization, to distill information from one or multiple sources.

    Alexa Conversations is a dialogue manager that decides what actions Alexa should take based on customer interactions, dialogue history, and the current query or input. It lets users navigate and select information on-screen in a natural way — say, searching by topics or partial titles. And it uses query-guided attention and self-attention mechanisms to incorporate on-screen context into dialogue management, to understand how users are referencing entities on-screen.

    Related content
    A model that uses both local and global context improves on the state of the art by 6% and 11% on two benchmark datasets.

    Web-scale neural information retrieval retrieves information in different modalities and in different languages, at the scale of billions of data points. Conversational explorations uses Transformer-based models to semantically match customer queries with relevant information. The models are trained using a multistage training paradigm optimized for diverse data sources.

    And finally, conversational explorations uses deep-learning models to summarize information in bite-sized snippets, while keeping crucial information.

    Customers will soon be able to experience such explorations, and we’re excited to get their feedback, to help us expand and enhance this capability in the months ahead.

    Amazon re:MARS 2022 - Day 2 - Keynote
    43:36 Rohit Prasad, SVP and Head Scientist, Alexa AI, Amazon

Related content

US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.