Rohit re-MARS.png
Alexa AI senior vice president and head scientist Rohit Prasad onstage at re:MARS 2022.

Alexa's head scientist on conversational exploration, ambient AI

Rohit Prasad on the pathway to generalizable intelligence and what excites him most about his re:MARS keynote.

In a talk today at re:MARS — Amazon’s conference on machine learning, automation, robotics, and space — Rohit Prasad, Alexa AI senior vice president and head scientist, discussed the emerging paradigm of ambient intelligence, in which artificial intelligence is everywhere around you, responding to requests and anticipating your needs, but fading into the background when you don’t need it. Ambient intelligence, Prasad argued, offers the most practical route to generalizable intelligence, and the best evidence for that is the difference that Alexa is already making in customers’ lives.

Amazon Science caught up with Prasad to ask him a few questions about his talk.

  1. Q. 

    What is ambient intelligence?

    A. 

    Ambient intelligence is artificial intelligence [AI] that is embedded everywhere in our environment. It is both reactive, responding to explicit customer requests, and proactive, anticipating customer needs. It uses a broad range of sensing technologies, like sound, vision, ultrasound, atmospheric sensing like temperature and humidity, depth sensors, and mechanical sensors, and it takes actions, playing your favorite tune, looking up information, buying products you need, or controlling thermostats, lights, or blinds in your smart home.

    Related content
    Reducing false positives for rare events, adapting Echo hardware to ultrasound sensing, and enabling concurrent ultrasound sensing and music playback are just a few challenges Amazon researchers addressed.

    Ambient intelligence is best exemplified by AI services like Alexa, which we use on a daily basis. Customers interact with Alexa billions of times each week. And thanks to predictive and proactive features like Hunches and Routines, more than 30% of smart-home interactions are initiated by Alexa.

  2. Q. 

    Why does ambient intelligence offer the most practical route to generalizable intelligence?

    A. 

    Alexa is made up of more than 30 machine learning systems that can each process different sensory signals. The real-time orchestration of these sophisticated machine learning systems makes Alexa one of the most complex applications of AI in the world.

    30+ ML systems.cropped.png
    Alexa is made up of more than 30 machine learning systems that process different sensory signals.

    Still, our customers demand even more from Alexa as their personal assistant, advisor, and companion. To continue to meet customer expectations, Alexa can’t just be a collection of special-purpose AI modules. Instead, it needs to be able to learn on its own and to generalize what it learns to new contexts. That’s why the ambient-intelligence path leads to generalizable intelligence.

    Generalizable intelligence [GI] doesn’t imply an all-knowing, all-capable, über AI that can accomplish any task in the world. Our definition is more pragmatic, with three key attributes: a GI agent can (1) accomplish multiple tasks; (2) rapidly evolve to ever-changing environments; and (3) learn new concepts and actions with minimal external human input. For inspiration for such intelligence, we don’t need to look far: we humans are still the best example of generalization and the standard for AI to aspire to.

    Related content
    Self-learning system uses customers’ rephrased requests as implicit error signals.

    We’re already seeing some of this today, with AI generalizing much better than ever before. Foundational Transformer-based large language models trained with self-supervision are powering many tasks with significantly less manually labeled data than was required before. For example, our large language model pretrained on Alexa interactions — the Alexa Teacher Model — captures knowledge that is used in language understanding, dialogue prediction, speech recognition, and even visual-scene understanding. We have also proven that models trained on multiple languages often outperform single-language models.

    Another element of better generalization is learning with little or no human involvement. Alexa’s self-learning mechanism is automatically correcting tens of millions of defects — both customer errors and errors in Alexa’s language-understanding models — each week. Customers can teach Alexa new behaviors, and Alexa can automatically generalize them across contexts — learning, for instance, that terms used to describe lighting settings can also be applied to speaker settings.

  3. Q. 

    Generalizing across contexts and reliably predicting customer needs will require more common sense than most AI systems exhibit today. How does common sense fit in to this picture?

    A. 

    To begin with, Alexa already exhibits common sense in a number of areas. For example, if you say to Alexa, “Set a reminder for the Super Bowl”, Alexa not only identifies the Super Bowl date and time but converts it into the customer’s time zone and reminds the customer 10 minutes before the start of the game, so they can wrap up what they are doing and get ready to watch the game.

    Related content
    A machine learning model learns representations that cluster devices according to their usage patterns.

    Another example is suggested Routines, where Alexa detects frequent customer interaction patterns and proactively suggests automating them via a Routine. So if someone frequently asks Alexa to turn on the lights and turn up the heat at 7:00 a.m., Alexa might suggest a Routine that does that automatically.

    Even if the customer didn’t set up a Routine, Alexa can detect anomalies as part of its Hunches feature. For example, Alexa can alert you about the garage door being left open at 9:00 p.m., if it's usually closed at that time.

    Moving forward, we are aspiring to take automated reasoning to a whole new level. Our first goal is the pervasive use of commonsense knowledge in conversational AI. As part of that effort, we have collected and publicly released the largest dataset for social common sense in an interactive setting.

    We have also invented a generative approach that we call think-before-you-speak. In this approach, the AI learns to first externalize implicit commonsense knowledge — that is, “think” — using a large language model combined with a commonsense knowledge graph such as ConceptNet. Then it uses this knowledge to generate responses — that is, to “speak”.

    Think-before-you-speak.cropped.png
    An overview of the think-before-you-speak approach.

    For example, if during a social conversation on Valentine’s day a customer says, “Alexa, I want to buy flowers for my wife”, Alexa can leverage world knowledge and temporal context to respond with “Perhaps you should get her red roses”.

    We’re also working to enable Alexa to answer complex queries that require multiple inference steps. For example, if a customer asks, "Has Austria won more skiing medals than Norway?", Alexa needs to combine the mention of skiing medals with temporal context to infer that the customer is asking about the Winter Olympics. Then Alexa needs to resolve “skiing” to the set of Winter Olympics events that involve skiing, which is not trivial, since those events can have names like “Nordic combined” and “biathlon”. Next, Alexa needs to retrieve and aggregate medal counts for each country and, finally, compare results.

    Skiing medals.cropped.png
    The Alexa AI team is working to enable Alexa to answer complex queries that require multiple inference steps.

    A key requirement for responding to such questions is explainability. Alexa shouldn't just reply "yes" but provide a response that summarizes Alexa's inference steps, such as "Norway has won X medals in skiing events in the Winter Olympics, which is Y more than Austria".

  4. Q. 

    What’s the one thing you are most excited about from your re:MARS keynote?

    A. 

    If I had to pick one thing among the suite of capabilities we showed at re:MARS, I’d say it is conversational explorations. Through the years, we have made Alexa far more knowledgeable, and it has gained expertise in many domains of information to answer natural-language queries from customers.

    Related content
    Replacing hand annotation with a machine learning component reduces labor, while an intersection operation enables multiple-entity queries.

    Now, we are taking such question answering to the next level. We are enabling conversational explorations on ambient devices, so you don’t have to pull out your phone or go to your laptop to explore information on the web. Instead, Alexa guides you on your topic of interest, distilling a wide variety of information available on the web and shifting the heavy lifting of researching content from you to Alexa.

    The idea is that when you ask Alexa a question — about a news story you’re following, a product you’re interested in, or, say, where to hike — the response includes specific information to help you make a decision, such as an excerpt from a product review. If that initial response gives you enough information to make a decision, great. But if it doesn’t — if, for instance, you ask for other options — that’s information that Alexa can use to sharpen its answer to your question or provide helpful suggestions.

    Making this possible required three different types of advances. One is in dialogue flow prediction through deep learning in Alexa Conversations. The second is web-scale neural information retrieval to match relevant information to customer queries. And the third is automated summarization, to distill information from one or multiple sources.

    Alexa Conversations is a dialogue manager that decides what actions Alexa should take based on customer interactions, dialogue history, and the current query or input. It lets users navigate and select information on-screen in a natural way — say, searching by topics or partial titles. And it uses query-guided attention and self-attention mechanisms to incorporate on-screen context into dialogue management, to understand how users are referencing entities on-screen.

    Related content
    A model that uses both local and global context improves on the state of the art by 6% and 11% on two benchmark datasets.

    Web-scale neural information retrieval retrieves information in different modalities and in different languages, at the scale of billions of data points. Conversational explorations uses Transformer-based models to semantically match customer queries with relevant information. The models are trained using a multistage training paradigm optimized for diverse data sources.

    And finally, conversational explorations uses deep-learning models to summarize information in bite-sized snippets, while keeping crucial information.

    Customers will soon be able to experience such explorations, and we’re excited to get their feedback, to help us expand and enhance this capability in the months ahead.

    Amazon re:MARS 2022 - Day 2 - Keynote
    43:36 Rohit Prasad, SVP and Head Scientist, Alexa AI, Amazon

Research areas

Related content

US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. As an MTS on our team, you will design, build, and maintain a Spark-based infrastructure to process and manage large datasets critical for machine learning research. You’ll work closely with our researchers to develop data workflows and tools that streamline the preparation and analysis of massive multimodal datasets, ensuring efficiency and scalability. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems and value an inclusive and collaborative team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Develop and maintain reliable infrastructure to enable large-scale data extraction and transformation. * Work closely with researchers to create tooling for emerging data-related needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software.
IN, KA, Bangalore
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? If so, the WW Amazon Logistics, Business Analytics team is for you. We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed, Applied Scientist with good analytical skills to help manage projects and operations, implement scheduling solutions, improve metrics, and develop scalable processes and tools. The primary role of an Operations Research Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how the final phase of delivery is done at Amazon. Candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, and the ability to use data and research to make changes. This role requires robust program management skills and research science skills in order to act on research outcomes. This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences
US, NY, New York
Amazon is investing heavily in building a world class advertising business and we are responsible for defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products. We are highly motivated, collaborative and fun-loving with an entrepreneurial spirit and bias for action. With a broad mandate to experiment and innovate, we are growing at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in the Sponsored Products organization builds GenAI-based shopper understanding and audience targeting systems, along with advanced deep-learning models for Click-through Rate (CTR) and Conversion Rate (CVR) predictions. We develop large-scale machine-learning (ML) pipelines and real-time serving infrastructure to match shoppers' intent with relevant ads across all devices, contexts, and marketplaces. Through precise estimation of shoppers' interactions with ads and their long-term value, we aim to drive optimal ad allocation and pricing, helping to deliver a relevant, engaging, and delightful advertising experience to Amazon shoppers. As our business grows and we undertake increasingly complex initiatives, we are looking for entrepreneurial, and self-driven science leaders to join our team. Key job responsibilities As a Principal Applied Scientist in the team, you will: * Seek to understand in depth the Sponsored Products offering at Amazon and identify areas of opportunities to grow our business via principled ML solutions. * Mentor and guide the applied scientists in our organization and hold us to a high standard of technical rigor and excellence in ML. * Design and lead organization wide ML roadmaps to help our Amazon shoppers have a delightful shopping experience while creating long term value for our sellers. * Work with our engineering partners and draw upon your experience to meet latency and other system constraints. * Identify untapped, high-risk technical and scientific directions, and simulate new research directions that you will drive to completion and deliver. * Be responsible for communicating our ML innovations to the broader internal & external scientific community.
CA, BC, Vancouver
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Global Hiring Science owns and develops products and services using Artificial Intelligence and Machine Learning (ML) that enhance recruitment. We collaborate with scientists to build and maintain machine learning solutions for hiring, offering opportunities to both apply and develop ML engineering skills in a production environment. Key job responsibilities • Design and implement advanced AI models using the latest LLM and GenAI technologies to develop fair and accurate machine learning models for hiring. • Clearly and cogently present your work and ideas, and respond effectively to feedback. • Collaborate with cross-functional teams with Research Scientists and Software Engineers to integrate AI-driven products into Amazon’s hiring process. • Stay at the advance of AI research, continuously exploring and implementing new techniques in NLP, LLMs, and GenAI to drive innovation in hiring. • Implement advanced natural language processing models to extract insights from diverse data sources. • Ensure effective teamwork, communication, collaboration, and commitment across multiple teams with competing priorities. • Contribute to the scientific community through publications, presentations, and collaborations with academic institutions. About the team The mission of Global Hiring Science (GHS) is to improve both the efficiency and effectiveness of hiring across Amazon with assessments and interview improvements. We are a team of experts in machine learning, industrial-organizational psychology, data science, and measuring the knowledge, skills, and abilities that it takes to be successful at Amazon.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities You will contribute directly to AI agent development in an applied research role, including model training, dataset design, and pre- and post-training optimization. You will be hired as a Member of Technical Staff.
US, WA, Seattle
PXTCS is looking for an economist who can apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure impact, and transform successful prototypes into improved policies and programs at scale. PXTCS is looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. A day in the life The Economist will work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team The People eXperience and Technology Central Science (PXTCS) team uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. PXTCS is an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.
US, CA, San Francisco
The Amazon General Intelligence “AGI” organization is looking for an Executive Assistant to support leaders of our Autonomy Team in our growing AI Lab space located in San Francisco. This role is ideal for exceptionally talented, dependable, customer-obsessed, and self-motivated individuals eager to work in a fast paced, exciting and growing team. This role serves as a strategic business partner, managing complex executive operations across the AGI organization. The position requires superior attention to detail, ability to meet tight deadlines, excellent organizational skills, and juggling multiple critical requests while proactively anticipating needs and driving improvements. High integrity, discretion with confidential information, and professionalism are essential. The successful candidate will complete complex tasks and projects quickly with minimal guidance, react with appropriate urgency, and take effective action while navigating ambiguity. Flexibility to change direction at a moment's notice is critical for success in this role. Key job responsibilities - Serve as strategic partner to senior leadership, identifying opportunities to improve organizational effectiveness and drive operational excellence - Manage complex calendars and scheduling for multiple executives - Drive continuous improvement through process optimization and new mechanisms - Coordinate team activities including staff meetings, offsites, and events - Schedule and manage cost-effective travel - Attend key meetings, track deliverables, and ensure timely follow-up - Create expense reports and manage budget tracking - Serve as liaison between executives and internal/external stakeholders - Build collaborative relationships with Executive Assistants across the company and with critical external partners - Help us build a great team culture in the SF Lab!
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As an Applied Scientist, you'll be at the forefront of developing breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive independent research initiatives in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll balance innovative technical exploration with practical implementation, collaborating with platform teams to ensure your models and algorithms perform robustly in dynamic real-world environments. You'll have access to Amazon's vast computational resources, enabling you to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Drive independent research initiatives across the robotics stack, including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Lead full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack, optimizing and scaling models for real-world applications - Contribute to the team's technical strategy and help shape our approach to next-generation robotics challenges A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Collaborate with our world-class research team to solve complex technical challenges - Lead technical initiatives from conception to deployment, working closely with robotics engineers to integrate your solutions into production systems - Participate in technical discussions and brainstorming sessions with team leaders and fellow scientists - Leverage our massive compute cluster and extensive robotics infrastructure to rapidly prototype and validate new ideas - Transform theoretical insights into practical solutions that can handle the complexities of real-world robotics applications About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers to push the boundaries of what's possible in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models and full-stack robotics systems that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, science understanding, locomotion, manipulation, sim2real transfer, multi-modal foundation models and multi-task robot learning, designing novel frameworks that bridge the gap between state-of-the-art research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives across the robotics stack, driving breakthrough approaches through hands-on research and development in areas including robotics foundation models, focusing on breakthrough approaches in perception, and manipulation, for example open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Guide technical direction for full-stack robotics projects from conceptualization through deployment, taking a system-level approach that integrates hardware considerations with algorithmic development, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with platform and hardware teams to ensure seamless integration across the entire robotics stack - Influence technical decisions and implementation strategies within your area of focus A day in the life - Design and implement novel foundation model architectures and innovative systems and algorithms, leveraging our extensive infrastructure to prototype and evaluate at scale - Guide fellow scientists in solving complex technical challenges across the full robotics stack - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster and extensive robotics infrastructure - Mentor team members while maintaining significant hands-on contribution to technical solutions About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team is building the future of intelligent robotics through innovative foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
US, CA, San Francisco
Amazon AGI Autonomy develops foundational capabilities for useful AI agents. We are the research lab behind Amazon Nova Act, a state-of-the-art computer-use agent. Our work combines Large Language Models (LLMs) with Reinforcement Learning (RL) to solve reasoning, planning, and world modeling in the virtual world. We are a small, talent-dense team with the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. Come be a part of our journey! --- About the team We’re looking for a generalist software engineer to build and evolve our internal data platform. The team builds data-intensive services that ingest, process, store, and distribute multi-modal training data across multiple internal and external sources. This work emphasizes data integrity, reliability, and extensibility in support of large-scale training and experimentation workloads. The team also builds and maintains APIs and SDKs that enable product engineers and researchers to build on top of the platform. As research directions change, so does our data, and today the team is focused on hardening the platform to reliably deliver an evolving set of data schemas, sources, and modalities. By building strong foundations and durable abstractions, we aim to enable new kinds of tooling and workflows over time. The team will play a key role in shaping them as the research evolves. --- Key job responsibilities * Build and operate reliable, performant backend and data platform services that support continuous ingestion and use of multi-modal training data. * Identify and implement opportunities to accelerate data generation, validation, and usage across training and evaluation workflows from multiple internal and external sources. * Partner closely with Human Feedback, Data Generation, Product Engineering, and Research teams to evolve and scale the data platform, APIs, and SDKs. * Own projects end to end, from technical design and implementation through deployment, observability, and long-term maintainability. * Write clear technical documentation and communicate design decisions and tradeoffs to stakeholders across multiple teams. * Raise the team’s technical aptitude through thoughtful code reviews, knowledge sharing, and mentorship.