The science behind ultrasonic motion sensing for Echo

Reducing false positives for rare events, adapting Echo hardware to ultrasound sensing, and enabling concurrent ultrasound sensing and music playback are just a few challenges Amazon researchers addressed.

Routine setup.gif
An example of how to use the Alexa app to configure Routines with ultrasound-based motion-detection triggers.

Last fall, Amazon introduced ultrasound-based motion detection, to enable Alexa customers to initiate Routines, or prespecified sequences of actions, when certain types of motion are detected (or not detected). For instance, Routines could be configured to automatically turn the lights on, play music, or announce weather or traffic when motion is detected near a customer’s Echo device, indicating that someone has entered the room.

There are many different motion detection technologies, but we selected ultrasound because it works in low-light conditions or even in the dark and, unlike radio waves, ultrasound waves do not travel through drywall, so there's less risk of detecting motion in other rooms.

Getting the technology to work on existing Echo hardware required innovation on a number of fronts — among other things, reducing false alarms by adequately sampling long-tail data; devising a self-calibration feature to adjust to variations in commodity hardware; and filtering out distortion during concurrent ultrasound detection and music playback. We describe the details below.

Ultrasound-based presence detection

With ultrasound-based presence detection (USPD), an ultrasonic signal (>=32 kHz) is transmitted via onboard loudspeakers, and changes in the signal received at the microphones are monitored to detect motion.

Ultrasound sensors can be broadly categorized as using Doppler sensing or time-of-flight sensing. In Doppler sensing, once the signal is transmitted, the system detects motion by looking for frequency shifts in the recorded spectrum of the signal, which are caused by its reflection from moving objects. This frequency shift is similar to the shift in sound frequencies you hear in a police car siren it is approaching you or moving away from you.

Doppler-Illustration.gif
Doppler sensing detects motion by looking for frequency shifts in the recorded spectrum of a transmitted signal, which are caused by reflection from moving objects.

In time-of-flight sensing, variations in the arrival time of the reflected signal are monitored to detect changes in the environment. We use Doppler sensing due to the robustness of its motion detection signal and because it generalizes well across the cases when Alexa is or is not playing audio simultaneously.

The magnitude of the Doppler-shifted signal depends on factors such as distance from target to source, the size and absorption coefficient of the target, the absorption coefficient of the room, and even the humidity and temperature in the room. In addition, when a person moves through a closed space, not only do we observe multiple Doppler components due to various parts of the body moving in different directions with different speeds, but we also observe repetitions of those components due to reflections.

Because of all these complexities, the signal received at the source is not at all as clean as a single tone with a frequency shift. In practice, what we observe looks more like this:

Motion spectrogram.png
Spectrogram of the signal received at device microphones when there is motion near the device.
Fan only.gif
Spectrogram of the signal received at device microphones when there is no motion in the room other than a rotating floor fan.
Fan and motion.gif
Spectrogram of the signal with both the rotating floor fan and human motion.

Further, moving objects such as fans and curtains introduce their own Doppler shifts, which have to be rejected since they do not necessarily indicate people’s presence. Below are two spectrograms, one of a room with no motion other than a rotating floor fan and another with both a fan and human motion near a device. As can be seen, they are difficult to tell apart.

These complications mean that conventional signal processing is insufficient to recognize human motion from Doppler-shifted signals. So we instead use deep learning, which should be able to recognize more heterogeneous patterns in the signal.

Below is a high-level block diagram of our USPD algorithm. On the signal transmitter side, a device- and environment-dependent optimal ultrasound signal is transmitted through the onboard loudspeaker. This signal gets reflected from a moving object and is then captured by the onboard microphone array. The signal is preprocessed and then passed to a neural-network-based classifier to detect motion.

uspd-simplified-diagram(2).png
High-level block diagram of USPD algorithm.

False alarms

The biggest algorithmic challenge we faced was achieving high detection accuracy while keeping the false-alarm rate low. Reducing false-alarm rates is especially challenging because of the well-known long-tail problem in AI: there are a multitude of rare events that could fool a detector, but their rarity means that they’re usually underrepresented in training data.

To address this problem, we started by training a seed model on a relatively small amount of data. First, we used the seed model to sort through large amounts of data and extract infrequent events. Second, we used a model trained on that rare-event data to automatically capture infrequent events during our internal data collection process. Data captured by these methods eventually helped us address the long-tail problem and achieve extremely low false-alarm rates.

Deployment challenges

Deploying the trained model brought its own challenges. We wanted to enable USPD with the lowest possible emission level, while still retaining a sufficient detection range, and do all of this with no additional hardware costs (i.e., using the available microphones and loudspeakers on Echo devices instead of dedicated ultrasound transmitters). Further, we decided to support always-on motion detection. This meant being able to detect motion even when a user is playing music from the device speakers. Finally, we added algorithms to improve the user experience in the presence of only minor motion and spent a considerable amount of effort to support Amazon’s goal of reducing our devices’ power consumption. We describe these in more detail below.

Hardware variations and environmental conditions

Using onboard loudspeakers and microphones for ultrasound transmission and sensing meant that we had to manage variable acoustic characteristics. Mass-produced devices are known to have a certain variation in amplitude and phase response, and it is very difficult to control the response of loudspeakers in the ultrasonic frequency range without affecting yield rates. To manage these hardware variations and environmental variations, we designed automatic device calibration modules to tailor emission frequencies and levels to both the devices’ hardware idiosyncrasies and the acoustic properties of the rooms in which they are used. This helped us provide a consistent user experience across devices without increasing device costs.

Music playback.gif
Signal spectrum observed in an empty room with concurrent music playback.
Motion and music playback.gif
Signal spectrum observed with both concurrent music playback and motion near device.
Cleaned-up music.gif
The signal observed in an empty room with concurrent music playback after passing through our multimicrophone algorithm.
Cleaned-up motion and music.gif
The signal with both concurrent playback and motion near the device after passing through our multimicrophone algorithm.

Sensing with concurrent music playback

Music playback is a key use case for Echo devices, which poses challenges, since we use device loudspeakers to simultaneously play music and emit ultrasound. Specifically, when low-frequency music content (such as bass sounds) is played together with an ultrasonic signal, the distortion shows up as noise in the ultrasound region. This noise is inaudible to listeners, but it interferes with the frequencies we use for sensing.

In order to enhance the ultrasound signal and get reasonable range performance in the presence of concurrent music, we developed an adaptive algorithm that uses the different magnitude and phase of distortion and motion features at different microphones to identify and remove distortion.

Major and minor motion

Human movements can be broadly categorized as either major or minor. Major movements include walking into or through an area, while minor movements include reaching for a telephone while seated, turning the pages in a book, opening a file folder, and picking up a coffee cup. Detecting minor movements is difficult, as their ultrasound spectra have very low signal-to-noise ratios (SNRs) compared to major movements, and detecting low-SNR events often means high false-positive rates. At the same time, detecting minor movements is extremely important for recognizing a user’s continued presence after walking into the room.

We developed an algorithm that changes the sensitivity of the detector based on context, such as time elapsed since the last major movement. After a customer walks into the room, the device operates at high sensitivity to detect minor movements for continued presence sensing, so we can provide the best of both worlds — high sensitivity to movements and low false-alarm rates.

Low-power mode

Reducing power consumption is an important goal at Amazon, so we implemented our solution on a low-power digital signal processor (DSP). This required a lot of code and optimizations of the neural-network architecture.

Specifically, as real-time systems, DSPs have strict computation schedules and budgets. This prevented us from deploying deeper neural network models, but we managed to trade off detection latency (on the order of 50 milliseconds) for higher accuracy by combining our neural models with custom DSP implementations. In addition, we disable ultrasonic emission when it is not essential; for example, we disable emissions for set periods of time after detecting presence.

The launch of far-field ultrasonic motion sensing on Echo devices is an exciting development, which will enable our customers to easily automate their day-to-day needs. We are looking forward to inventing more on behalf of our customers.

Acknowledgments: Special thanks to Tarun Pruthi for his contributions to this post.

Related content

US, WA, Seattle
Amazon is seeking an experienced, self-directed data scientist to support the research and analytical needs of Amazon Web Services' Sales teams. This is a unique opportunity to invent new ways of leveraging our large, complex data streams to automate sales efforts and to accelerate our customers' journey to the cloud. This is a high-visibility role with significant impact potential. You, as the right candidate, are adept at executing every stage of the machine learning development life cycle in a business setting; from initial requirements gathering to through final model deployment, including adoption measurement and improvement. You will be working with large volumes of structured and unstructured data spread across multiple databases and can design and implement data pipelines to clean and merge these data for research and modeling. Beyond mathematical understanding, you have a deep intuition for machine learning algorithms that allows you to translate business problems into the right machine learning, data science, and/or statistical solutions. You’re able to pick up and grasp new research and identify applications or extensions within the team. You’re talented at communicating your results clearly to business owners in concise, non-technical language. Key job responsibilities • Work with a team of analytics & insights leads, data scientists and engineers to define business problems. • Research, develop, and deliver machine learning & statistical solutions in close partnership with end users, other science and engineering teams, and business stakeholders. • Use AWS services like SageMaker to deploy scalable ML models in the cloud. • Examples of projects include modeling usage of AWS services to optimize sales planning, recommending sales plays based on historical patterns, and building a sales-facing alert system using anomaly detection.
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, CA, Palo Alto
The Amazon Search team creates powerful, customer-focused search solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. We’re seeking a Principal Scientist with a deep expertise in Search Science. Your responsibilities will include everything from developing and prototyping innovative machine learning, and deep learning algorithms to implementing, testing, and supporting full solutions in a production environment. We are looking for innovators who can contribute to advancing search technology on what’s scientifically possible while remaining committed to creating world-class products. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon.com (AMZN), Earth's most customer-centric company one of the world's leading internet companies. We provide a highly customer-centric, team-oriented environment in our offices located in Palo Alto, California. Key job responsibilities As a hands-on leader of this team, you’ll be responsible for defining key research questions, identifying relevant data, adopting or proposing innovative machine learning solutions conducting rigorous experiments, publishing results and working with the engineering team to deploy these solutions. As a strategic leader, you will identify investment opportunities, develop long term strategies, and propose, prioritize and deliver on goals. You’ll also participate in organizational planning, hiring, mentorship and leadership development. You will be technically fearless and with a passion for building scalable science and engineering solutions. You will serve as a key scientific resource in full-cycle development (conception, design, implementation, testing to documentation, delivery, and maintenance). About the team Starting in 2009, the Visual Search & Augmented Reality team has thus far launched many visual search solutions on the Amazon App that use computer vision and machine learning/deep learning to help customers complete their shopping missions more easily; multiple internal teams at Amazon (devices, Kindle, Seller services, etc.) also use our libraries and APIs to deliver solutions to their own customers. We are a full stack shop, and our team capabilities cover the whole solution spectrum, ranging across applied science, large scale engineering services, product management, UX design, and mobile app development for iOS and Android.
LU, Luxembourg
&ltHire Relocation Requisition - not for posting> Provides insights to leadership on improving Supply Chain cost and Speed by using Data Science and Analytics techniques. Build Dashboards and models to industrialize these findings at scale.
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to work with business partners to hone complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. They will work in a team setting with individuals from diverse disciplines and backgrounds. They will serve as an ambassador for science and a scientific resource for business teams, so that scientific processes permeate throughout the HR organization to the benefit of Amazonians and Amazon. Ideal candidates will own the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use causal inference methods to evaluate the impact of policies on employee outcomes. Examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. Use scientifically rigorous methods to develop and recommend career paths for employees. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer.
US, WA, Seattle
Amazon is looking for talented Postdoctoral Scientists to join our global Science teams for a one-year, full-time research position. Postdoctoral Scientists will innovate as members of Amazon’s key global Science teams, including: AWS, Alexa AI, Alexa Shopping, Amazon Style, CoreAI, Last Mile, and Supply Chain Optimization Technologies. Postdoctoral Scientists will join one of may central, global science teams focused on solving research-intense business problems by leveraging Machine Learning, Econometrics, Statistics, and Data Science. Postdoctoral Scientists will work at the intersection of ML and systems to solve practical data driven optimization problems at Amazon scale. Postdocs will raise the scientific bar across Amazon by diving deep into exploratory areas of research to enhance the customer experience and improve efficiencies. Please note: This posting is one of several Amazon Postdoctoral Scientist postings. Please only apply to a maximum of 2 Amazon Postdoctoral Scientist postings that are relevant to your technical field and subject matter expertise. Key job responsibilities * Work closely with a senior science advisor, collaborate with other scientists and engineers, and be part of Amazon’s vibrant and diverse global science community. * Publish your innovation in top-tier academic venues and hone your presentation skills. * Be inspired by challenges and opportunities to invent cutting-edge techniques in your area(s) of expertise.