The science behind ultrasonic motion sensing for Echo

Reducing false positives for rare events, adapting Echo hardware to ultrasound sensing, and enabling concurrent ultrasound sensing and music playback are just a few challenges Amazon researchers addressed.

Routine setup.gif
An example of how to use the Alexa app to configure Routines with ultrasound-based motion-detection triggers.

Last fall, Amazon introduced ultrasound-based motion detection, to enable Alexa customers to initiate Routines, or prespecified sequences of actions, when certain types of motion are detected (or not detected). For instance, Routines could be configured to automatically turn the lights on, play music, or announce weather or traffic when motion is detected near a customer’s Echo device, indicating that someone has entered the room.

There are many different motion detection technologies, but we selected ultrasound because it works in low-light conditions or even in the dark and, unlike radio waves, ultrasound waves do not travel through drywall, so there's less risk of detecting motion in other rooms.

Getting the technology to work on existing Echo hardware required innovation on a number of fronts — among other things, reducing false alarms by adequately sampling long-tail data; devising a self-calibration feature to adjust to variations in commodity hardware; and filtering out distortion during concurrent ultrasound detection and music playback. We describe the details below.

Ultrasound-based presence detection

With ultrasound-based presence detection (USPD), an ultrasonic signal (>=32 kHz) is transmitted via onboard loudspeakers, and changes in the signal received at the microphones are monitored to detect motion.

Ultrasound sensors can be broadly categorized as using Doppler sensing or time-of-flight sensing. In Doppler sensing, once the signal is transmitted, the system detects motion by looking for frequency shifts in the recorded spectrum of the signal, which are caused by its reflection from moving objects. This frequency shift is similar to the shift in sound frequencies you hear in a police car siren it is approaching you or moving away from you.

Doppler-Illustration.gif
Doppler sensing detects motion by looking for frequency shifts in the recorded spectrum of a transmitted signal, which are caused by reflection from moving objects.

In time-of-flight sensing, variations in the arrival time of the reflected signal are monitored to detect changes in the environment. We use Doppler sensing due to the robustness of its motion detection signal and because it generalizes well across the cases when Alexa is or is not playing audio simultaneously.

The magnitude of the Doppler-shifted signal depends on factors such as distance from target to source, the size and absorption coefficient of the target, the absorption coefficient of the room, and even the humidity and temperature in the room. In addition, when a person moves through a closed space, not only do we observe multiple Doppler components due to various parts of the body moving in different directions with different speeds, but we also observe repetitions of those components due to reflections.

Because of all these complexities, the signal received at the source is not at all as clean as a single tone with a frequency shift. In practice, what we observe looks more like this:

Motion spectrogram.png
Spectrogram of the signal received at device microphones when there is motion near the device.
Fan only.gif
Spectrogram of the signal received at device microphones when there is no motion in the room other than a rotating floor fan.
Fan and motion.gif
Spectrogram of the signal with both the rotating floor fan and human motion.

Further, moving objects such as fans and curtains introduce their own Doppler shifts, which have to be rejected since they do not necessarily indicate people’s presence. Below are two spectrograms, one of a room with no motion other than a rotating floor fan and another with both a fan and human motion near a device. As can be seen, they are difficult to tell apart.

These complications mean that conventional signal processing is insufficient to recognize human motion from Doppler-shifted signals. So we instead use deep learning, which should be able to recognize more heterogeneous patterns in the signal.

Below is a high-level block diagram of our USPD algorithm. On the signal transmitter side, a device- and environment-dependent optimal ultrasound signal is transmitted through the onboard loudspeaker. This signal gets reflected from a moving object and is then captured by the onboard microphone array. The signal is preprocessed and then passed to a neural-network-based classifier to detect motion.

uspd-simplified-diagram(2).png
High-level block diagram of USPD algorithm.

False alarms

The biggest algorithmic challenge we faced was achieving high detection accuracy while keeping the false-alarm rate low. Reducing false-alarm rates is especially challenging because of the well-known long-tail problem in AI: there are a multitude of rare events that could fool a detector, but their rarity means that they’re usually underrepresented in training data.

To address this problem, we started by training a seed model on a relatively small amount of data. First, we used the seed model to sort through large amounts of data and extract infrequent events. Second, we used a model trained on that rare-event data to automatically capture infrequent events during our internal data collection process. Data captured by these methods eventually helped us address the long-tail problem and achieve extremely low false-alarm rates.

Deployment challenges

Deploying the trained model brought its own challenges. We wanted to enable USPD with the lowest possible emission level, while still retaining a sufficient detection range, and do all of this with no additional hardware costs (i.e., using the available microphones and loudspeakers on Echo devices instead of dedicated ultrasound transmitters). Further, we decided to support always-on motion detection. This meant being able to detect motion even when a user is playing music from the device speakers. Finally, we added algorithms to improve the user experience in the presence of only minor motion and spent a considerable amount of effort to support Amazon’s goal of reducing our devices’ power consumption. We describe these in more detail below.

Hardware variations and environmental conditions

Using onboard loudspeakers and microphones for ultrasound transmission and sensing meant that we had to manage variable acoustic characteristics. Mass-produced devices are known to have a certain variation in amplitude and phase response, and it is very difficult to control the response of loudspeakers in the ultrasonic frequency range without affecting yield rates. To manage these hardware variations and environmental variations, we designed automatic device calibration modules to tailor emission frequencies and levels to both the devices’ hardware idiosyncrasies and the acoustic properties of the rooms in which they are used. This helped us provide a consistent user experience across devices without increasing device costs.

Music playback.gif
Signal spectrum observed in an empty room with concurrent music playback.
Motion and music playback.gif
Signal spectrum observed with both concurrent music playback and motion near device.
Cleaned-up music.gif
The signal observed in an empty room with concurrent music playback after passing through our multimicrophone algorithm.
Cleaned-up motion and music.gif
The signal with both concurrent playback and motion near the device after passing through our multimicrophone algorithm.

Sensing with concurrent music playback

Music playback is a key use case for Echo devices, which poses challenges, since we use device loudspeakers to simultaneously play music and emit ultrasound. Specifically, when low-frequency music content (such as bass sounds) is played together with an ultrasonic signal, the distortion shows up as noise in the ultrasound region. This noise is inaudible to listeners, but it interferes with the frequencies we use for sensing.

In order to enhance the ultrasound signal and get reasonable range performance in the presence of concurrent music, we developed an adaptive algorithm that uses the different magnitude and phase of distortion and motion features at different microphones to identify and remove distortion.

Major and minor motion

Human movements can be broadly categorized as either major or minor. Major movements include walking into or through an area, while minor movements include reaching for a telephone while seated, turning the pages in a book, opening a file folder, and picking up a coffee cup. Detecting minor movements is difficult, as their ultrasound spectra have very low signal-to-noise ratios (SNRs) compared to major movements, and detecting low-SNR events often means high false-positive rates. At the same time, detecting minor movements is extremely important for recognizing a user’s continued presence after walking into the room.

We developed an algorithm that changes the sensitivity of the detector based on context, such as time elapsed since the last major movement. After a customer walks into the room, the device operates at high sensitivity to detect minor movements for continued presence sensing, so we can provide the best of both worlds — high sensitivity to movements and low false-alarm rates.

Low-power mode

Reducing power consumption is an important goal at Amazon, so we implemented our solution on a low-power digital signal processor (DSP). This required a lot of code and optimizations of the neural-network architecture.

Specifically, as real-time systems, DSPs have strict computation schedules and budgets. This prevented us from deploying deeper neural network models, but we managed to trade off detection latency (on the order of 50 milliseconds) for higher accuracy by combining our neural models with custom DSP implementations. In addition, we disable ultrasonic emission when it is not essential; for example, we disable emissions for set periods of time after detecting presence.

The launch of far-field ultrasonic motion sensing on Echo devices is an exciting development, which will enable our customers to easily automate their day-to-day needs. We are looking forward to inventing more on behalf of our customers.

Acknowledgments: Special thanks to Tarun Pruthi for his contributions to this post.

Related content

US, CA, Santa Clara
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, NY, New York
Job summaryAmazon is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background to help build industry-leading language technology.Our mission is to provide a delightful experience to Amazon’s customers by pushing the envelope in Natural Language Processing (NLP), Natural Language Understanding (NLU), Dialog management, conversational AI and Machine Learning (ML).As part of our AI team in Amazon AWS, you will work alongside internationally recognized experts to develop novel algorithms and modeling techniques to advance the state-of-the-art in human language technology. Your work will directly impact millions of our customers in the form of products and services, as well as contributing to the wider research community. You will gain hands on experience with Amazon’s heterogeneous text and structured data sources, and large-scale computing resources to accelerate advances in language understanding.We are hiring primarily in Conversational AI / Dialog System Development areas: NLP, NLU, Dialog Management, NLG.This role can be based in NYC, Seattle or Palo Alto.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, CA, Santa Clara
Job summaryAWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on building automated ML solutions for planetary-scale sustainability and geospatial applications. Our team's mission is to develop ready-to-use and automated solutions that solve important sustainability and geospatial problems. We live in a time wherein geospatial data, such as climate, agricultural crop yield, weather, landcover, etc., has become ubiquitous. Cloud computing has made it easy to gather and process the data that describes the earth system and are generated by satellites, mobile devices, and IoT devices. Our vision is to bring the best ML/AI algorithms to solve practical environmental and sustainability-related R&D problems at scale. Building these solutions require a solid foundation in machine learning infrastructure and deep learning technologies. The team specializes in developing popular open source software libraries like AutoGluon, GluonCV, GluonNLP, DGL, Apache/MXNet (incubating). Our strategy is to bring the best of ML based automation to the geospatial and sustainability area.We are seeking an experienced Applied Scientist for the team. This is a role that combines science knowledge (around machine learning, computer vision, earth science), technical strength, and product focus. It will be your job to develop ML system and solutions and work closely with the engineering team to ship them to our customers. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. You are also expected to work closely with other applied scientists and demonstrate Amazon Leadership Principles (https://www.amazon.jobs/en/principles). Strong technical skills and experience with machine learning and computer vision are required. Experience working with earth science, mapping, and geospatial data is a plus. Our customers are extremely technical and the solutions we build for them are strongly coupled to technical feasibility.About the teamInclusive Team CultureAt AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded scientist and enable them to take on more complex tasks in the future.Interested in this role? Reach out to the recruiting team with questions or apply directly via amazon.jobs.
US, WA, Seattle
Job summaryHow can we create a rich, data-driven shopping experience on Amazon? How do we build data models that helps us innovate different ways to enhance customer experience? How do we combine the world's greatest online shopping dataset with Amazon's computing power to create models that deeply understand our customers? Recommendations at Amazon is a way to help customers discover products. Our team's stated mission is to "grow each customer’s relationship with Amazon by leveraging our deep understanding of them to provide relevant and timely product, program, and content recommendations". We strive to better understand how customers shop on Amazon (and elsewhere) and build recommendations models to streamline customers' shopping experience by showing the right products at the right time. Understanding the complexities of customers' shopping needs and helping them explore the depth and breadth of Amazon's catalog is a challenge we take on every day. Using Amazon’s large-scale computing resources you will ask research questions about customer behavior, build models to generate recommendations, and run these models directly on the retail website. You will participate in the Amazon ML community and mentor Applied Scientists and software development engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and the retail business and you will measure the impact using scientific tools. We are looking for passionate, hard-working, and talented Applied scientist who have experience building mission critical, high volume applications that customers love. You will have an enormous opportunity to make a large impact on the design, architecture, and implementation of cutting edge products used every day, by people you know.Key job responsibilitiesScaling state of the art techniques to Amazon-scaleWorking independently and collaborating with SDEs to deploy models to productionDeveloping long-term roadmaps for the team's scientific agendaDesigning experiments to measure business impact of the team's effortsMentoring scientists in the departmentContributing back to the machine learning science community
US, NY, New York
Job summaryAmazon Web Services is looking for world class scientists to join the Security Analytics and AI Research team within AWS Security Services. This group is entrusted with researching and developing core data mining and machine learning algorithms for various AWS security services like GuardDuty (https://aws.amazon.com/guardduty/) and Macie (https://aws.amazon.com/macie/). In this group, you will invent and implement innovative solutions for never-before-solved problems. If you have passion for security and experience with large scale machine learning problems, this will be an exciting opportunity.The AWS Security Services team builds technologies that help customers strengthen their security posture and better meet security requirements in the AWS Cloud. The team interacts with security researchers to codify our own learnings and best practices and make them available for customers. We are building massively scalable and globally distributed security systems to power next generation services.Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop and enable them to take on more complex tasks in the future.A day in the lifeAbout the hiring groupJob responsibilities* Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment.* Collaborate with software engineering teams to integrate successful experiments into large scale, highly complex production services.* Report results in a scientifically rigorous way.* Interact with security engineers, product managers and related domain experts to dive deep into the types of challenges that we need innovative solutions for.
US, VA, Herndon
Job summaryAmazon Advertising is one of Amazon's fastest growing and most profitable businesses. Amazon's advertising portfolio helps merchants, retail vendors, and brand owners succeed via native advertising, which grows incremental sales of their products sold through Amazon. The primary goals are to help shoppers discover new products they love, be the most efficient way for advertisers to meet their business objectives, and build a sustainable business that continuously innovates on behalf of customers. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth.This opportunity is for the Advertising Forecasting Science team, which consists of scientists and engineers based in Palo Alto, California and New York City. The team builds forecasting models for advertising campaigns and financial planning, with revenue exceeding tens of billions of dollars. In addition, the forecasting science team makes auction prediction and handles bid optimization for billions of requests per day, impacting the company’s performance directly using advanced Machine Learning algorithms.As a Senior Research Scientist, and team leader, you will:Drive data science (machine learning) projects end-to-end - from ideation, analysis, prototyping, development, metrics, and monitoring.Conduct deep analyses on massive Ad user and contextual data setsPropose viable modelling ideas to advance optimization or efficiency, with supporting argument, data, or, preferably, preliminary results.Invent ways to overcome technical limitations and enable new forms of analyses to drive key technical and business decisions.Design, develop, and maintain scalable, Machine Learning models with automated training, validation, monitoring and reporting.Stay familiar with the field and apply state-of-the-art Machine Learning techniques to our domain problems, around forecasting, bidding, allocation, and optimization.Produce peer-reviewed scientific paper in top journals and conferences.Present results, reports, and data insights to both technical and business leadership.Work across teams and lead a group of talented scientists and engineers to solve problems in the domains of forecasting, auction theory, bid optimization, and user clustering.Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate.Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding.Team video https://youtu.be/zD_6Lzw8raE
US, NY, New York
Job summary**This job is also open for New York and Palo Alto**This position will be part of the Marketplace Intelligence organization within Sponsored Products. Our team focuses on determining operating points of Sponsored Products to provide efficient and customized shopping experience for shoppers and increased discoverability and business growth for selling partners by developing new measurements, economics methodology, and state-of-the art machine learnt optimization technologies. Our systems, algorithms and strategies operates on one of the most sophisticated advertising marketplaces that evolves from impression to impression and changes from one marketplace to another, across segments of traffic and demand. Key job responsibilitiesAs a seasoned leader, you will build and manage an inter-disciplinary team with scientists, economists, and engineers to develop and manage monetization controls for SP marketplace. The leader will set the vision of pricing strategy, build engineering system and large scale machine learning and optimization models. These models will continuously change operating points based on the feedback of marketplace, shopper and advertisers.This is a rare and exciting opportunity to be a trailblazer at the intersection of cutting edge science, economics, game theory and engineering to impact millions of advertisers. As a hands-on leader of this team, you will be responsible for defining long term business strategies, answer key research questions, discover investment opportunities, develop and deploy innovative machine learning solutions and deliver business results. You will also participate in organizational planning, hiring, mentoring and leadership development. You will be technically fearless and build scalable science and engineering solutions.
US, WA, Seattle
Job summaryThe Amazon Product Classification and Inference Services team is seeking a Sr. Applied Science Manager for leading initiatives for understanding, classifying and inferring product information. Our vision is simple: build AI systems that are capable of a deep product understanding, so we can organize and merchandise products across the Amazon e-commerce catalog worldwide. You will lead a team of experienced Applied Scientists (direct reports) and also a Manager of Applied Science to create models and deliver them into the Amazon production ecosystem. Your efforts will build a robust ensemble of ML techniques that can drive classification of products with a high precision and scale to new countries and languages. The leader will drive investments in cutting edge machine learning: natural language processing, computer vision and artificial intelligence techniques to solve real world problems at scale. We develop Deep Neural Networks as our your daily job and use the team's output to affect the product discovery of the biggest e-tailer in the world. The research findings are directly related to Amazon’s Browse experience and impact million of customers. The team builds solutions ranging from automatic detection of misclassified product information in the ever growing Amazon Catalog, applications for inferring and backfilling product attributes (processing images, text and all the unstructured attributes) in the Amazon catalog to drive true understanding of products at scale. We are looking for an entrepreneurial, experienced Sr. Applied Science Manager who can turn a group of Machine Learning Scientists and Managers (PhD's in NLP, CV) to produce best in class solutions. The ideal candidate has deep expertise in one or several of the following fields: Web search, Applied/Theoretical Machine Learning, Deep Neural Networks, Classification Systems, Clustering, Label Propagation, Natural Language Processing, Computer Vision. S/he has a strong publication record at top relevant academic venues and experience in launching products/features in the industry.Key job responsibilitiesIn this team, you will:Manage business and technical requirements, design, be responsible for the overall coordination, quality, productivity and will be the primary point of contact for world-wide stakeholders of programs and goals that you lead.Partner with scientists, economists, and engineers to help deliver scalable ML scaled models, while building mechanisms to help our customers gain and apply insights, and build road maps for the projects you own.Track service levels and schedule adherence, and ensure the individual stakeholder teams meet and exceed their performance targets.Be expected to discover, define, and apply scientific, engineering, and business best practices.Manage and develop Scientists (direct reports and a Science Manager with a respective team).A day in the lifeYou will lead an Amazon team that builds creative solutions to real world problems. Your team will own devising the strategy and execution plans that power initiatives ranging from: classifying all Amazon products, fact extraction, automatic detection of missing product information, active learning mechanisms for scaling human tasks, building applications for understanding what type of information is critical, building mechanisms to analyze product composition, ingest images, text, and unstructured data to drive deep understanding of products at scale. About the teamThe team's mission is to infer knowledge, understand, classify, derive product facts for all Amazon products entering the Catalog. The work is critical to power the Amazon Taxonomy, Search, Navigation and Detail Page experiences, impacting million of customers. This is an already formed team with experience leading programs spanning services and ML initiatives supporting all countries and languages. The leader collaborates closely with Software Managers, Sr. Leaders, and has exposure to multiple peer teams at Amazon who rely on this team's developments.
US, MA, Westborough
Job summaryAre you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers who work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling, and fun.Amazon.com empowers a smarter, faster, more consistent customer experience through automation. Amazon Robotics automates fulfillment center operations using various methods of robotic technology including autonomous mobile robots, sophisticated control software, language perception, power management, computer vision, depth sensing, machine learning, object recognition, and semantic understanding of commands. Amazon Robotics has a dedicated focus on research and development to continuously explore new opportunities to extend its product lines into new areas.This role is a 6-month Co-Op to join AR full-time (40 hours/week) from January 9, 2023 to June 23, 2023. Amazon Robotics co-op opportunity will be Hybrid (2-3 days onsite) and based out of the Greater Boston Area in our two state-of-the-art facilities in Westborough, MA and North Reading, MA. Both campuses provide a unique opportunity to have direct access to robotics testing labs and manufacturing facilities.Key job responsibilitiesWe are seeking data scientist co-ops to help us analyze data, quantify uncertainty, and build machine learning models to make quick prediction.