Orbital Systems makes sustainable water use something people can enjoy

Mehrdad Mahdjoubi, founder and CEO of Alexa Fund portfolio company, explains "no compromise" approach to saving resources without sacrificing user experience.

(Editor’s note: This article is the latest installment in a series by Amazon Science delving into the science behind products and services of companies in which Amazon has invested. The Alexa Fund invested in Orbital Systems in April 2022.)

Americans use an average of 60 gallons of clean water per person inside their homes each day, nearly half of which goes to toilets and showers. Low-flow fixtures and other conservation strategies have reduced per-capita consumption since the 1980s. But the scarcity of water on Earth — less than 1% of the water on our planet is drinkable — demands that we use it more wisely.

Orbital Systems founder and CEO Mehrdad Mahdjoubi
Orbital Systems founder and CEO Mehrdad Mahdjoubi said his work with NASA on a plan for human habitation on Mars inspired his thinking when he launched Orbital.

Orbital Systems aims to meet this demand with products inspired by a setting where water is even more scarce: Mars.

As a master’s student in industrial design, founder and CEO Mehrdad Mahdjoubi collaborated with NASA scientists on a plan for long-term human habitation on Mars.

“The limitations on available resources meant that we had to be creative,” Mahdjoubi says.

He realized that other essential resources, like energy and nutrients, tend to flow in a circular manner. “With energy, we have the sun. Nutrients cycle between the physical environment and living organisms. But water use is not like that,” Mahdjoubi explains.

Mahdjoubi started Orbital Systems in 2012 to develop resource-saving products for consumers on Earth. The Orbital Shower was the first product to launch. The shower starts with less than a gallon of water, and the system checks the water quality 20 times per second during operation. Water too contaminated to be reused is discarded and replaced, and the rest is filtered and exposed to ultraviolet light before being recirculated. Because the recirculated water is warm, it requires much less energy for heating. The Orbital Shower uses up to 90% less water and 80% less energy than a conventional shower.

Next came the Orbital Tap, which reuses water from a sink to flush a toilet. “It’s a solution to the age-old problem of flushing clean drinking water down the toilet,” Mahdjoubi says.

Sustainability
Pioneering web-based PackOpt tool has resulted in an annual reduction in cardboard waste of 7% to 10% in North America, saving roughly 60,000 tons of cardboard annually.

Orbital products are available to hotel chains, real-estate developers, and individual consumers in Sweden, Denmark, and Germany. Mahdjoubi is seeking partners and installers to enable expansion to markets in North America and beyond.

Orbital users can start a customized shower — lighting, music, flow, temperature, duration, etc. — with a single command via an Alexa integration.

Mahdjoubi spoke with Amazon Science about water use from Mars to ancient Rome to our own bathrooms and what differentiates Orbital Systems’ products from other resource-saving strategies.

  1. Q. 

    What inspired you to design sustainable water systems for Mars and implement them on Earth?

    A. 

    While I was studying industrial design at Lund University, I had the opportunity to go to Johnson Space Center and take part in a project with NASA. The goal was to enable an earthly living standard on Mars.

    Alexa in space
    From physical constraints to acoustic challenges, learn how Amazon collaborated with NASA and Lockheed Martin to get Alexa to work in space.

    Establishing a Mars colony required us to solve a lot of issues related to resource management, given the strict resource limitations.

    There are three resources that humans need in addition to oxygen. One is energy, the second is water, and the third is nutrients. I started looking at how we handle resources on Earth, and how we might translate the positive aspects to a new setting without repeating the more foolish aspects.

    Every resource has a supply side and a demand side. In the energy sector, we’ve walked a pretty long way on the demand side. A hundred or two hundred years ago, all of our focus in energy was on the supply side: pump up more oil, pump up more gas, produce more. Then around the second oil crisis in the ‘70s, there was a massive realization that we can’t just focus on pumping up more, creating more energy. We need to think about how we use it.

    The Orbital Shower mobile app is seen on a smartphone screen displaying 370 liters of water saved, the phone is sitting on a towel
    Orbital's CEO says their system "starts with technical innovation that actually reduces water and energy use and then tracks the savings through a digital interface."

    Fast forward to today, we have much more focus on the demand side. There’s an understanding that we can do a lot more if we just don’t waste the energy we make. Many of the products we buy are energy efficient: fridges, TVs, LED lights.

    Then I looked at water and found the way we use water now is practically no different from the Roman aqueducts of 2,000 or 3,000 years ago. We find water somewhere, and if it’s clean, we pump it to houses. If it’s not clean, we treat it first. We haven’t really changed anything since the Romans. I mean, we flush toilets with drinking water. We haven’t done anything to optimize the demand side.

    So when it comes to building a new habitat on Mars, what are we not going to do? We’re not going to generate drinking water — which we do out of air, pretty expensive — and then pour it down a drain or flush it down a toilet.

    That was the background, back in 2012. At the time, the mission launch was set to 2035 and the shower project was mostly at the conceptual level. I felt there was no reason to wait 20 years to develop a product for eight astronauts when there is an urgent need and much bigger opportunity on Earth.

    I moved back to Sweden, where I was born and raised, started Orbital Systems, and got research funding to come up with functioning prototypes. Today we’ve raised north of a hundred million dollars and have a team of almost 100 people.

  2. Q. 

    How did you approach the product design, and what were the biggest challenges?

    A. 

    What attracted me as a product designer is that this is a rare "no compromise" solution. You can save water and energy and you get a really, really nice shower experience. If you were to ask yourself what constitutes a nice shower, it comes down to three factors. Number one is clean water, number two is flow rate, and number three is temperature stability. We outperform conventional showers on all three points.

    Achieving sustainability
    How data-driven methods can help to identify fault detection and drive energy efficiencies for facilities of all sizes.

    One challenge in creating that experience was to make everything seamlessly work together. We’re talking about 350 individual components. It’s a multidisciplinary system where you have to control everything, including thermodynamics, software, pumping fluid dynamics, temperature sensors, pressure sensors, filtration, and electronics. We had to develop our own water quality sensors, figure out how to handle soap, and those kinds of things.

    And we wanted to hide the tech. People want to feel the bathroom is a nice relaxing area, not a tech lab. So we needed to spend the time and energy to make it invisible. In an Orbital Shower, aside from the control dial and digital display, there’s no way you would guess what’s going on in the background.

    Adapting to customer needs
    Scientists updated the system to accurately measure body fat percentage and create personalized 3D models even if there’s not enough room to take a full-body photo.

    A key technical challenge that we had to overcome was filtration. Most filters that can trap bacteria and viruses are exceedingly slow. We use filtration technology, developed with NASA funding, that is ultra-effective but very fast, coupled with ultraviolet light for disinfection.

    Another challenge was that it needed to be easy to install. We wanted to make sure that our products could fit in any bathroom, whether the wall is made of bricks or plaster. A lot of effort was spent to accommodate different circumstances and building methods. We offer retrofit models that can be installed in existing bathrooms, as well as models meant for new installation.

  3. Q. 

    How is Orbital technology different from other ‘smart water’ systems?

    A. 

    First, if you look into water technologies in general, the majority has been done at the utility level, like desalination plants, water treatment plans, that kind of stuff. Much less has been done for the end consumer, and most of that has targeted drinking water, which is a tiny fraction of the water we use.

    That said, technology for low-flow showers and toilets has existed for like 40 years or so and still not become super popular, because the quality of the experience is compromised. We are going at it the other way. I think, personally, to find scalable solutions, we need to focus on the ‘no compromise’ ones.

    Then there are smart water systems that are all about data, informing consumers about their water use with the goal of changing behaviors to save water. Several of our clients told us they had tried such ‘awareness solutions’ before but fell into despair, because they felt they couldn’t do enough.

    An Orbital Shower control dial with a digital reading showing 91.3 liters saved is seen, a person's hand is seen is pointing to the dial
    The Orbital Shower starts with less than a gallon of water, and the system checks the water quality 20 times per second during operation.

    Orbital starts with technical innovation that actually reduces water and energy use and then tracks the savings through a digital interface.

    The digital interface also features an Alexa integration where you can start your perfect shower with a single command, coordinating the Orbital Shower with other smart-home features like lighting, room temperature, window dressings, music, et cetera.

    I think people want to maximize their experience — like taking a long shower — without being wasteful, to be responsible and live sustainably but also have a pleasant experience. Why shouldn’t we have both?

Research areas

Related content

US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
LU, Luxembourg
Are you a talented and inventive scientist with a strong passion about modern data technologies and interested to improve business processes, extracting value from the data? Would you like to be a part of an organization that is aiming to use self-learning technology to process data in order to support the management of the procurement function? The Global Procurement Technology, as a part of Global Procurement Operations, is seeking a skilled Data Scientist to help build its future data intelligence in business ecosystem, working with large distributed systems of data and providing Machine Learning (ML) and Predictive Modeling expertise. You will be a member of the Data Engineering and ML Team, joining a fast-growing global organization, with a great vision to transform the Procurement field, and become the role model in the market. This team plays a strategic role supporting the core Procurement business domains as well as it is the cornerstone of any transformation and innovation initiative. Our mission is to provide a high-quality data environment to facilitate process optimization and business digitalization, on a global scale. We are supporting business initiatives, including but not limited to, strategic supplier sourcing (e.g. contracting, negotiation, spend analysis, market research, etc.), order management, supplier performance, etc. We are seeking an individual who can thrive in a fast-paced work environment, be collaborative and share knowledge and experience with his colleagues. You are expected to deliver results, but at the same time have fun with your teammates and enjoy working in the company. In Amazon, you will find all the resources required to learn new skills, grow your career, and become a better professional. You will connect with world leaders in your field and you will be tackling Data Science challenges to ensure business continuity, by taking the right decisions for your customers. As a Data Scientist in the team, you will: -be the subject matter expert to support team strategies that will take Global Procurement Operations towards world-class predictive maintenance practices and processes, driving more effective procurement functions, e.g. supplier segmentation, negotiations, shipping supplies volume forecast, spend management, etc. -have strong analytical skills and excel in the design, creation, management, and enterprise use of large data sets, combining raw data from different sources -provide technical expertise to support the development of ML models to facilitate intelligent digital services, such as Contract Lifecycle Management (CLM) and Negotiations platform -cooperate closely with different groups of stakeholders, e.g. data/software engineers, product/program managers, analysts, senior leadership, etc. to evaluate business needs and objectives to set up the best data management environment -create and share with audiences of varying levels technical papers and presentations -deal with ambiguity, prioritizing needs, and delivering results in a dynamic environment Basic qualifications -Master’s Degree in Computer Science/Engineering, Informatics, Mathematics, or a related technical discipline -3+ years of industry experience in data engineering/science, business intelligence or related field -3+ years experience in algorithm design, engineering and implementation for very-large scale applications to solve real problems -Very good knowledge of data modeling and evaluation -Very good understanding of regression modeling, forecasting techniques, time series analysis, machine-learning concepts such as supervised and unsupervised learning, classification, random forest, etc. -SQL and query performance tuning skills Preferred qualifications -2+ years of proficiency in using R, Python, Scala, Java or any modern language for data processing and statistical analysis -Experience with various RDBMS, such as PostgreSQL, MS SQL Server, MySQL, etc. -Experience architecting Big Data and ML solutions with AWS products (Redshift, DynamoDB, Lambda, S3, EMR, SageMaker, Lex, Kendra, Forecast etc.) -Experience articulating business questions and using quantitative techniques to arrive at a solution using available data -Experience with agile/scrum methodologies and its benefits of managing projects efficiently and delivering results iteratively -Excellent written and verbal communication skills including data visualization, especially in regards to quantitative topics discussed with non-technical colleagues
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, CA, San Francisco
About Twitch Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate, learn, and grow their personal interests and passions. We’re always live at Twitch. Stay up to date on all things Twitch on Linkedin, Twitter and on our Blog. About the role: Twitch builds data-driven machine learning solutions across several rich problem spaces: Natural Language Processing (NLP), Recommendations, Semantic Search, Classification/Categorization, Anomaly Detection, Forecasting, Safety, and HCI/Social Computing/Computational Social Science. As an Intern, you will work with a dedicated Mentor and Manager on a project in one of these problem areas. You will also be supported by an Advisor and participate in cohort activities such as research teach backs and leadership talks. This position can also be located in San Francisco, CA or virtual. You Will: Solve large-scale data problems. Design solutions for Twitch's problem spaces Explore ML and data research
US, WA, Seattle
We are a team of doers working passionately to apply cutting-edge advances in deep learning in the life sciences to solve real-world problems. As a Senior Applied Science Manager you will participate in developing exciting products for customers. Our team rewards curiosity while maintaining a laser-focus in bringing products to market. Competitive candidates are responsive, flexible, and able to succeed within an open, collaborative, entrepreneurial, startup-like environment. At the leading edge of both academic and applied research in this product area, you have the opportunity to work together with a diverse and talented team of scientists, engineers, and product managers and collaborate with others teams. Location is in Seattle, US Embrace Diversity Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust Balance Work and Life Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives Mentor & Grow Careers Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. Key job responsibilities • Manage high performing engineering and science teams • Hire and develop top-performing engineers, scientists, and other managers • Develop and execute on project plans and delivery commitments • Work with business, data science, software engineer, biological, and product leaders to help define product requirements and with managers, scientists, and engineers to execute on them • Build and maintain world-class customer experience and operational excellence for your deliverables
US, Virtual
The Amazon Economics Team is hiring Interns in Economics. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with placement. Roughly 85% of interns from previous cohorts have converted to full time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com.
US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person. Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel. CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.