NASA's Orion spacecraft shown splashing down in the Pacific Ocean, west of Baja California, at 9:40 a.m. PST Sunday, Dec. 11.
NASA's Orion spacecraft shown splashing down in the Pacific Ocean, west of Baja California, at 9:40 a.m. PST Sunday, Dec. 11.
NASA

The story behind how Amazon integrated Alexa into NASA’s Orion spacecraft

From physical constraints to acoustic challenges, learn how Amazon collaborated with NASA and Lockheed Martin to get Alexa to work in space.

In September 2018, Amazon’s principal solutions architect Philippe Lantin received a call from his manager.

“He said that there was something unique on the horizon, and that their team was being roped into a one-in-a-lifetime opportunity,” says Lantin.

This was no understatement: on the horizon was an opportunity for Amazon to collaborate with Lockheed Martin Space, and integrate Alexa into NASA’s Orion spacecraft. Orion is the first human-rated spacecraft to visit the moon in more than 40 years.

“NASA is trying to engage the public more as we enter this new era of space travel, where we are setting the stage for extra-planetary exploration,” says Lantin. “Given that over 100 million Alexa-enabled devices have already been sold, having Alexa answer questions like 'Alexa, how far to the moon?' and 'Alexa, how fast is Orion going?' is a great way to get people around the world involved in NASA’s missions.”

Setting up an Echo device on Earth is simple: all you need is a Wi-Fi connection and the Alexa app. However, things are far more complicated in space.

“We had several constraints we had to contend with,” says Lantin.
The Alexa team had to operate within a key physical constraint: the shape of the device. The contours of a smart speaker greatly influences it acoustics. To give just one example, the round shape of the Echo Dot offers a full cavity behind the woofer for a better bass response.

Related content
NASA is using unsupervised learning and anomaly detection to explore the extreme conditions associated with solar superstorms.

However, when it came to NASA’s Orion spacecraft, Alexa’s acoustic engineers had to work with what was provided by Lockheed Martin and NASA.

“We were somewhat limited by the form factor, which was a small briefcase-like enclosure that was 1.5 feet by one foot and about five inches in depth.” says Lantin.

There were other physical constraints. Equipment developed for the mission had to be resilient to extreme shocks and vibrations, be at least minimally resistant to radiation emissions in space, and utilize highly specific and custom-built components such as power and data cables.

Limited Internet connectivity

The team also had to deal with issues related to the lack of Internet connectivity. Typically, Echo devices use on-device keyword spotting designed to detect when a customer says the wake word. This on-device buffer exists in temporary memory. After the wake word is detected, the device streams the audio to the cloud for speech recognition and natural language processing.

Orion components

“However, for the Orion mission, our ability to communicate with the Alexa cloud was severely constrained,” says Lantin. “NASA’s spacecraft uses the Deep Space Network to communicate with earth. The bandwidth available to us on the downlink connection is slightly better than dial-up modem speeds with latencies of up to five seconds. To further complicate matters, NASA prioritizes traffic for navigation and telemetry for the first payload — traffic for Alexa was consigned to the secondary payload.”

The team also wanted to demonstrate a fully autonomous experience, one that can be used in future missions where Earth connectivity is no longer a practical option for real-time communications. They used Alexa Local Voice Control to get around the limited internet connectivity. Alexa Local Voice control allows select devices to process voice commands locally, rather than sending information to the cloud.

Lantin says that while the team was motivated by demonstrating technology leadership and scientific innovation in a very challenging environment, the real motivator was making a difference in the lives of millions of customers at home on earth.

“At Amazon, we take pride in delivering customer-focused science,” says Lantin. “That was a huge motivator for us at every step along the way. Consider the innovations we drove to Alexa Local Voice Control. These improvements will allow people on earth to do so much more with Alexa in situations where they have limited or no Internet connectivity. Think about when you are in a car and passing through a tunnel, or driving to a remote camping site. You can do things like tune the radio, turn on the AC and continue to use voice commands, even if you have a feeble signal or no cellular connection.”

Lantin says that the acoustic innovations enabled for Orion will also translate directly into improved listening experiences for people interacting with the mission on earth.

Rohit Prasad, Alexa senior vice president and head scientist, on the initial collaboration with Lockheed Martin

“We are planning to have celebrities, politicians, STEM students and a variety of other personalities interacting with Alexa,” says Lantin. “ And so, we also spent a good deal of time thinking about what people might want to ask Alexa about during the mission.”

The nuances of acoustics aboard Orion

Scott Isabelle is a solutions architect at Amazon. Prior to Amazon, Isabelle was a distinguished member of the technical staff at Motorola, where among other projects, he developed systems for enhancing voice quality in mobile devices, methods for generating adaptive ringtones, and a two-microphone system for noise suppression.

“One of the most important things for a voice AI is being in an environment where it is able to pick up your voice,” says Isabelle.

Related content
Parallel processing of microphone inputs and separate detectors for periodicity and dynamics improve performance.

However, this is easier said than done on Orion, where the conical shape of the space capsule, and its metallic surfaces result in increased reverberation.

“The voice can keep bouncing around losing very little energy. This wouldn’t happen in a typical room where soft material like curtains and sofa cushions can absorb some of the sound. In the capsule, the reverberations off the metal surfaces can play up the wrong frequencies that are critical to automatic speech recognition. This can make it really difficult for Alexa to pick up wake word invocations. ”

Alexa also has to contend with increased noise levels aboard Orion.

NASA | Exploration Mission-1 — pushing farther into deep space

The ideal signal to noise ratio (SNR) for systems involving intelligent voice assistants is in the range 20 to 30 decibels (dB). To place this in context, a SNR of 35 dB is what you would find in a face-to-face conversation between two people standing one meter apart in a typical room (higher SNRs are better). However, the SNR onboard the Orion capsule can be much lower than 20 dB, posing an acoustic challenge.

To enhance the comfort of astronauts during crewed missions, NASA would ordinarily place acoustic blankets to damp down the reverberation in the hard-walled cabin, and some of the noise created by engines and pumps.

“However, because this is an uncrewed mission we have to work within an environment with more reverberation and noise than we would like,” says Isabelle.

re:MARS 2022 — Open space: A revolution in robots for space exploration

There’s another challenge that results from the lack of humans on board. For Orion, commands to Alexa have to be sent from ground control. The low-bandwidth connections utilized for the transmission can make it challenging to transmit voices at the wide range of frequencies essential for differentiating between sounds.

During a typical phone call, our voice is typically transmitted in the narrow band, which ranges from 300 HZ to 3,000 HZ. For Alexa to make out individual words aboard the noisier environment of the space capsule, the voice would have to be transmitted at 8,000 HZ.

“Voice commands from mission control are transmitted to Alexa via a speaker,” says Isabelle. “Flight-qualified speakers are typically designed for narrow-band communications. And so for this mission we were required to use a speaker that could operate in the flight environment.”

Alexa in Space | Alexa Innovators | Build with Alexa

The team relied on what Isabelle calls “brute force” to overcome these acoustic challenges.

Related content
A combination of audio and visual signals guide the device’s movement, so the screen is always in view.

“We designed the speaker playback system to play at extremely loud volumes, which allowed us to increase the SNR to where we wanted it to be.”

The team also took advantage of the physical form factor of Alexa on board to overcome the challenges presented by the noisy environment. The speakers, the light ring and the microphones in the briefcase-like enclosure for Alexa are close to each other, which allows acoustic engineers to overcome some of the obstacles presented by the background noise and reverberation.

Finally, the team deployed two microphones in combination with an array processing algorithm. The latter combined the signals from the two microphones in a way that helps Alexa make sense of the commands being issued from mission control. Because the speakers and microphones are in fixed positions relative to each other — as opposed to a room, where people can be located in any number of locations — the algorithms could be more easily designed to distinguish between speech and the surrounding noise.

Related content
Zoox principal software engineer Olivier Toupet on company’s autonomous robotaxi technology

While the Orion mission will not have any crew members on board, the initial mission will lay the groundwork for Alexa to be integrated into future crewed missions — to the moon, Mars, and beyond. Having Alexa onboard in these future missions would allow crew members to be more efficient in day-to-day tasks, and benefit from the comforts of having Alexa on board such as the ability to play relaxing music and to keep in touch with family and friends back home.

Future crewed missions would have their own unique set of challenges, where Alexa would have to respond to commands from astronauts, who might (literally) be free-floating at multiple points within the capsule. Isabelle and Lantin are already looking forward to overcoming the challenges enabled by crewed missions.

“For someone who grew up watching Star Trek, working on this project has been a dream come true,” says Lantin. “It’s great to be able to build the future. But it’s just as exciting to be able to draw on all of this great work, and be able to enjoy all these new Alexa capabilities during my next vacation, and my day-to-day life right here at home.”

Editor's note

This is a reprint of an article that initially ran on the Alexa Skills Kit Blog. To learn more about the technical innovations that helped get Alexa into space and some inspiring facts about the Artemis I mission, visit the Skills Kit blog.

Research areas

Related content

IN, TS, Hyderabad
Welcome to the Worldwide Returns & ReCommerce team (WWR&R) at Amazon.com. WWR&R is an agile, innovative organization dedicated to ‘making zero happen’ to benefit our customers, our company, and the environment. Our goal is to achieve the three zeroes: zero cost of returns, zero waste, and zero defects. We do this by developing products and driving truly innovative operational excellence to help customers keep what they buy, recover returned and damaged product value, keep thousands of tons of waste from landfills, and create the best customer returns experience in the world. We have an eye to the future – we create long-term value at Amazon by focusing not just on the bottom line, but on the planet. We are building the most sustainable re-use channel we can by driving multiple aspects of the Circular Economy for Amazon – Returns & ReCommerce. Amazon WWR&R is comprised of business, product, operational, program, software engineering and data teams that manage the life of a returned or damaged product from a customer to the warehouse and on to its next best use. Our work is broad and deep: we train machine learning models to automate routing and find signals to optimize re-use; we invent new channels to give products a second life; we develop highly respected product support to help customers love what they buy; we pilot smarter product evaluations; we work from the customer backward to find ways to make the return experience remarkably delightful and easy; and we do it all while scrutinizing our business with laser focus. You will help create everything from customer-facing and vendor-facing websites to the internal software and tools behind the reverse-logistics process. You can develop scalable, high-availability solutions to solve complex and broad business problems. We are a group that has fun at work while driving incredible customer, business, and environmental impact. We are backed by a strong leadership group dedicated to operational excellence that empowers a reasonable work-life balance. As an established, experienced team, we offer the scope and support needed for substantial career growth. Amazon is earth’s most customer-centric company and through WWR&R, the earth is our customer too. Come join us and innovate with the Amazon Worldwide Returns & ReCommerce team!
GB, MLN, Edinburgh
We’re looking for a Machine Learning Scientist in the Personalization team for our Edinburgh office experienced in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the Edinburgh offices and wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problems. Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
Amazon Advertising operates at the intersection of eCommerce and advertising, and is investing heavily in building a world-class advertising business. We are defining and delivering a collection of self-service performance advertising products that drive discovery and sales. Our products are strategically important to our Retail and Marketplace businesses driving long-term growth. We deliver billions of ad impressions and millions of clicks daily and are breaking fresh ground to create world-class products to improve both shopper and advertiser experience. With a broad mandate to experiment and innovate, we grow at an unprecedented rate with a seemingly endless range of new opportunities. The Ad Response Prediction team in Sponsored Products organization build advanced deep-learning models, large-scale machine-learning pipelines, and real-time serving infra to match shoppers’ intent to relevant ads on all devices, for all contexts and in all marketplaces. Through precise estimation of shoppers’ interaction with ads and their long-term value, we aim to drive optimal ads allocation and pricing, and help to deliver a relevant, engaging and delightful ads experience to Amazon shoppers. As the business and the complexity of various new initiatives we take continues to grow, we are looking for talented Applied Scientists to join the team. Key job responsibilities As a Applied Scientist II, you will: * Conduct hands-on data analysis, build large-scale machine-learning models and pipelines * Work closely with software engineers on detailed requirements, technical designs and implementation of end-to-end solutions in production * Run regular A/B experiments, gather data, perform statistical analysis, and communicate the impact to senior management * Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving * Provide technical leadership, research new machine learning approaches to drive continued scientific innovation * Be a member of the Amazon-wide Machine Learning Community, participating in internal and external MeetUps, Hackathons and Conferences
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! In Prime Video READI, our mission is to automate infrastructure scaling and operational readiness. We are growing a team specialized in time series modeling, forecasting, and release safety. This team will invent and develop algorithms for forecasting multi-dimensional related time series. The team will develop forecasts on key business dimensions with optimization recommendations related to performance and efficiency opportunities across our global software environment. As a founding member of the core team, you will apply your deep coding, modeling and statistical knowledge to concrete problems that have broad cross-organizational, global, and technology impact. Your work will focus on retrieving, cleansing and preparing large scale datasets, training and evaluating models and deploying them to production where we continuously monitor and evaluate. You will work on large engineering efforts that solve significantly complex problems facing global customers. You will be trusted to operate with complete independence and are often assigned to focus on areas where the business and/or architectural strategy has not yet been defined. You must be equally comfortable digging in to business requirements as you are drilling into design with development teams and developing production ready learning models. You consistently bring strong, data-driven business and technical judgment to decisions. You will work with internal and external stakeholders, cross-functional partners, and end-users around the world at all levels. Our team makes a big impact because nothing is more important to us than delivering for our customers, continually earning their trust, and thinking long term. You are empowered to bring new technologies to your solutions. If you crave a sense of ownership, this is the place to be.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist in the Content Understanding Team, you will lead the end-to-end research and deployment of video and multi-modal models applied to a variety of downstream applications. More specifically, you will: - Work backwards from customer problems to research and design scientific approaches for solving them - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals About the team Our Prime Video Content Understanding team builds holistic media representations (e.g. descriptions of scenes, semantic embeddings) and apply them to new customer experiences supply chain problems. Our technology spans the entire Prime Video catalogue globally, and we enable instant recaps, skip intro timing, ad placement, search, and content moderation.
US, WA, Seattle
Do you want to re-invent how millions of people consume video content on their TVs, Tablets and Alexa? We are building a free to watch streaming service called Fire TV Channels (https://techcrunch.com/2023/08/21/amazon-launches-fire-tv-channels-app-400-fast-channels/). Our goal is to provide customers with a delightful and personalized experience for consuming content across News, Sports, Cooking, Gaming, Entertainment, Lifestyle and more. You will work closely with engineering and product stakeholders to realize our ambitious product vision. You will get to work with Generative AI and other state of the art technologies to help build personalization and recommendation solutions from the ground up. You will be in the driver's seat to present customers with content they will love. Using Amazon’s large-scale computing resources, you will ask research questions about customer behavior, build state-of-the-art models to generate recommendations and run these models to enhance the customer experience. You will participate in the Amazon ML community and mentor Applied Scientists and Software Engineers with a strong interest in and knowledge of ML. Your work will directly benefit customers and you will measure the impact using scientific tools.
US, MA, Boston
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading technology with Large Language Models (LLMs) and multi-modal systems. You will support projects that work on technologies including multi-modal model alignment, moderation systems and evaluation. Key job responsibilities As an Applied Scientist with the AGI team, you will support the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in generative artificial intelligence (GenAI). You are also expected to publish in top tier conferences. About the team The AGI team has a mission to push the envelope in LLMs and multimodal systems. Specifically, we focus on model alignment with an aim to maintain safety while not denting utility, in order to provide the best-possible experience for our customers.
IN, HR, Gurugram
We're on a journey to build something new a green field project! Come join our team and build new discovery and shopping products that connect customers with their vehicle of choice. We're looking for a talented Senior Applied Scientist to join our team of product managers, designers, and engineers to design, and build innovative automotive-shopping experiences for our customers. This is a great opportunity for an experienced engineer to design and implement the technology for a new Amazon business. We are looking for a Applied Scientist to design, implement and deliver end-to-end solutions. We are seeking passionate, hands-on, experienced and seasoned Senior Applied Scientist who will be deep in code and algorithms; who are technically strong in building scalable computer vision machine learning systems across item understanding, pose estimation, class imbalanced classifiers, identification and segmentation.. You will drive ideas to products using paradigms such as deep learning, semi supervised learning and dynamic learning. As a Senior Applied Scientist, you will also help lead and mentor our team of applied scientists and engineers. You will take on complex customer problems, distill customer requirements, and then deliver solutions that either leverage existing academic and industrial research or utilize your own out-of-the-box but pragmatic thinking. In addition to coming up with novel solutions and prototypes, you will directly contribute to implementation while you lead. A successful candidate has excellent technical depth, scientific vision, project management skills, great communication skills, and a drive to achieve results in a unified team environment. You should enjoy the process of solving real-world problems that, quite frankly, haven’t been solved at scale anywhere before. Along the way, we guarantee you’ll get opportunities to be a bold disruptor, prolific innovator, and a reputed problem solver—someone who truly enables AI and robotics to significantly impact the lives of millions of consumers. Key job responsibilities Architect, design, and implement Machine Learning models for vision systems on robotic platforms Optimize, deploy, and support at scale ML models on the edge. Influence the team's strategy and contribute to long-term vision and roadmap. Work with stakeholders across , science, and operations teams to iterate on design and implementation. Maintain high standards by participating in reviews, designing for fault tolerance and operational excellence, and creating mechanisms for continuous improvement. Prototype and test concepts or features, both through simulation and emulators and with live robotic equipment Work directly with customers and partners to test prototypes and incorporate feedback Mentor other engineer team members. A day in the life - 6+ years of building machine learning models for retail application experience - PhD, or Master's degree and 6+ years of applied research experience - Experience programming in Java, C++, Python or related language - Experience with neural deep learning methods and machine learning - Demonstrated expertise in computer vision and machine learning techniques.
IN, HR, Gurugram
Our customers have immense faith in our ability to deliver packages timely and as expected. A well planned network seamlessly scales to handle millions of package movements a day. It has monitoring mechanisms that detect failures before they even happen (such as predicting network congestion, operations breakdown), and perform proactive corrective actions. When failures do happen, it has inbuilt redundancies to mitigate impact (such as determine other routes or service providers that can handle the extra load), and avoids relying on single points of failure (service provider, node, or arc). Finally, it is cost optimal, so that customers can be passed the benefit from an efficiently set up network. Amazon Shipping is hiring Applied Scientists to help improve our ability to plan and execute package movements. As an Applied Scientist in Amazon Shipping, you will work on multiple challenging machine learning problems spread across a wide spectrum of business problems. You will build ML models to help our transportation cost auditing platforms effectively audit off-manifest (discrepancies between planned and actual shipping cost). You will build models to improve the quality of financial and planning data by accurately predicting ship cost at a package level. Your models will help forecast the packages required to be pick from shipper warehouses to reduce First Mile shipping cost. Using signals from within the transportation network (such as network load, and velocity of movements derived from package scan events) and outside (such as weather signals), you will build models that predict delivery delay for every package. These models will help improve buyer experience by triggering early corrective actions, and generating proactive customer notifications. Your role will require you to demonstrate Think Big and Invent and Simplify, by refining and translating Transportation domain-related business problems into one or more Machine Learning problems. You will use techniques from a wide array of machine learning paradigms, such as supervised, unsupervised, semi-supervised and reinforcement learning. Your model choices will include, but not be limited to, linear/logistic models, tree based models, deep learning models, ensemble models, and Q-learning models. You will use techniques such as LIME and SHAP to make your models interpretable for your customers. You will employ a family of reusable modelling solutions to ensure that your ML solution scales across multiple regions (such as North America, Europe, Asia) and package movement types (such as small parcel movements and truck movements). You will partner with Applied Scientists and Research Scientists from other teams in US and India working on related business domains. Your models are expected to be of production quality, and will be directly used in production services. You will work as part of a diverse data science and engineering team comprising of other Applied Scientists, Software Development Engineers and Business Intelligence Engineers. You will participate in the Amazon ML community by authoring scientific papers and submitting them to Machine Learning conferences. You will mentor Applied Scientists and Software Development Engineers having a strong interest in ML. You will also be called upon to provide ML consultation outside your team for other problem statements. If you are excited by this charter, come join us!