NASA's Orion spacecraft shown splashing down in the Pacific Ocean, west of Baja California, at 9:40 a.m. PST Sunday, Dec. 11.
NASA's Orion spacecraft shown splashing down in the Pacific Ocean, west of Baja California, at 9:40 a.m. PST Sunday, Dec. 11.
NASA

The story behind how Amazon integrated Alexa into NASA’s Orion spacecraft

From physical constraints to acoustic challenges, learn how Amazon collaborated with NASA and Lockheed Martin to get Alexa to work in space.

In September 2018, Amazon’s principal solutions architect Philippe Lantin received a call from his manager.

“He said that there was something unique on the horizon, and that their team was being roped into a one-in-a-lifetime opportunity,” says Lantin.

This was no understatement: on the horizon was an opportunity for Amazon to collaborate with Lockheed Martin Space, and integrate Alexa into NASA’s Orion spacecraft. Orion is the first human-rated spacecraft to visit the moon in more than 40 years.

“NASA is trying to engage the public more as we enter this new era of space travel, where we are setting the stage for extra-planetary exploration,” says Lantin. “Given that over 100 million Alexa-enabled devices have already been sold, having Alexa answer questions like 'Alexa, how far to the moon?' and 'Alexa, how fast is Orion going?' is a great way to get people around the world involved in NASA’s missions.”

Setting up an Echo device on Earth is simple: all you need is a Wi-Fi connection and the Alexa app. However, things are far more complicated in space.

“We had several constraints we had to contend with,” says Lantin.
The Alexa team had to operate within a key physical constraint: the shape of the device. The contours of a smart speaker greatly influences it acoustics. To give just one example, the round shape of the Echo Dot offers a full cavity behind the woofer for a better bass response.

Related content
NASA is using unsupervised learning and anomaly detection to explore the extreme conditions associated with solar superstorms.

However, when it came to NASA’s Orion spacecraft, Alexa’s acoustic engineers had to work with what was provided by Lockheed Martin and NASA.

“We were somewhat limited by the form factor, which was a small briefcase-like enclosure that was 1.5 feet by one foot and about five inches in depth.” says Lantin.

There were other physical constraints. Equipment developed for the mission had to be resilient to extreme shocks and vibrations, be at least minimally resistant to radiation emissions in space, and utilize highly specific and custom-built components such as power and data cables.

Limited Internet connectivity

The team also had to deal with issues related to the lack of Internet connectivity. Typically, Echo devices use on-device keyword spotting designed to detect when a customer says the wake word. This on-device buffer exists in temporary memory. After the wake word is detected, the device streams the audio to the cloud for speech recognition and natural language processing.

Orion components

“However, for the Orion mission, our ability to communicate with the Alexa cloud was severely constrained,” says Lantin. “NASA’s spacecraft uses the Deep Space Network to communicate with earth. The bandwidth available to us on the downlink connection is slightly better than dial-up modem speeds with latencies of up to five seconds. To further complicate matters, NASA prioritizes traffic for navigation and telemetry for the first payload — traffic for Alexa was consigned to the secondary payload.”

The team also wanted to demonstrate a fully autonomous experience, one that can be used in future missions where Earth connectivity is no longer a practical option for real-time communications. They used Alexa Local Voice Control to get around the limited internet connectivity. Alexa Local Voice control allows select devices to process voice commands locally, rather than sending information to the cloud.

Lantin says that while the team was motivated by demonstrating technology leadership and scientific innovation in a very challenging environment, the real motivator was making a difference in the lives of millions of customers at home on earth.

“At Amazon, we take pride in delivering customer-focused science,” says Lantin. “That was a huge motivator for us at every step along the way. Consider the innovations we drove to Alexa Local Voice Control. These improvements will allow people on earth to do so much more with Alexa in situations where they have limited or no Internet connectivity. Think about when you are in a car and passing through a tunnel, or driving to a remote camping site. You can do things like tune the radio, turn on the AC and continue to use voice commands, even if you have a feeble signal or no cellular connection.”

Lantin says that the acoustic innovations enabled for Orion will also translate directly into improved listening experiences for people interacting with the mission on earth.

Rohit Prasad, Alexa senior vice president and head scientist, on the initial collaboration with Lockheed Martin

“We are planning to have celebrities, politicians, STEM students and a variety of other personalities interacting with Alexa,” says Lantin. “ And so, we also spent a good deal of time thinking about what people might want to ask Alexa about during the mission.”

The nuances of acoustics aboard Orion

Scott Isabelle is a solutions architect at Amazon. Prior to Amazon, Isabelle was a distinguished member of the technical staff at Motorola, where among other projects, he developed systems for enhancing voice quality in mobile devices, methods for generating adaptive ringtones, and a two-microphone system for noise suppression.

“One of the most important things for a voice AI is being in an environment where it is able to pick up your voice,” says Isabelle.

Related content
Parallel processing of microphone inputs and separate detectors for periodicity and dynamics improve performance.

However, this is easier said than done on Orion, where the conical shape of the space capsule, and its metallic surfaces result in increased reverberation.

“The voice can keep bouncing around losing very little energy. This wouldn’t happen in a typical room where soft material like curtains and sofa cushions can absorb some of the sound. In the capsule, the reverberations off the metal surfaces can play up the wrong frequencies that are critical to automatic speech recognition. This can make it really difficult for Alexa to pick up wake word invocations. ”

Alexa also has to contend with increased noise levels aboard Orion.

NASA | Exploration Mission-1 — pushing farther into deep space

The ideal signal to noise ratio (SNR) for systems involving intelligent voice assistants is in the range 20 to 30 decibels (dB). To place this in context, a SNR of 35 dB is what you would find in a face-to-face conversation between two people standing one meter apart in a typical room (higher SNRs are better). However, the SNR onboard the Orion capsule can be much lower than 20 dB, posing an acoustic challenge.

To enhance the comfort of astronauts during crewed missions, NASA would ordinarily place acoustic blankets to damp down the reverberation in the hard-walled cabin, and some of the noise created by engines and pumps.

“However, because this is an uncrewed mission we have to work within an environment with more reverberation and noise than we would like,” says Isabelle.

re:MARS 2022 — Open space: A revolution in robots for space exploration

There’s another challenge that results from the lack of humans on board. For Orion, commands to Alexa have to be sent from ground control. The low-bandwidth connections utilized for the transmission can make it challenging to transmit voices at the wide range of frequencies essential for differentiating between sounds.

During a typical phone call, our voice is typically transmitted in the narrow band, which ranges from 300 HZ to 3,000 HZ. For Alexa to make out individual words aboard the noisier environment of the space capsule, the voice would have to be transmitted at 8,000 HZ.

“Voice commands from mission control are transmitted to Alexa via a speaker,” says Isabelle. “Flight-qualified speakers are typically designed for narrow-band communications. And so for this mission we were required to use a speaker that could operate in the flight environment.”

Alexa in Space | Alexa Innovators | Build with Alexa

The team relied on what Isabelle calls “brute force” to overcome these acoustic challenges.

Related content
A combination of audio and visual signals guide the device’s movement, so the screen is always in view.

“We designed the speaker playback system to play at extremely loud volumes, which allowed us to increase the SNR to where we wanted it to be.”

The team also took advantage of the physical form factor of Alexa on board to overcome the challenges presented by the noisy environment. The speakers, the light ring and the microphones in the briefcase-like enclosure for Alexa are close to each other, which allows acoustic engineers to overcome some of the obstacles presented by the background noise and reverberation.

Finally, the team deployed two microphones in combination with an array processing algorithm. The latter combined the signals from the two microphones in a way that helps Alexa make sense of the commands being issued from mission control. Because the speakers and microphones are in fixed positions relative to each other — as opposed to a room, where people can be located in any number of locations — the algorithms could be more easily designed to distinguish between speech and the surrounding noise.

Related content
Zoox principal software engineer Olivier Toupet on company’s autonomous robotaxi technology

While the Orion mission will not have any crew members on board, the initial mission will lay the groundwork for Alexa to be integrated into future crewed missions — to the moon, Mars, and beyond. Having Alexa onboard in these future missions would allow crew members to be more efficient in day-to-day tasks, and benefit from the comforts of having Alexa on board such as the ability to play relaxing music and to keep in touch with family and friends back home.

Future crewed missions would have their own unique set of challenges, where Alexa would have to respond to commands from astronauts, who might (literally) be free-floating at multiple points within the capsule. Isabelle and Lantin are already looking forward to overcoming the challenges enabled by crewed missions.

“For someone who grew up watching Star Trek, working on this project has been a dream come true,” says Lantin. “It’s great to be able to build the future. But it’s just as exciting to be able to draw on all of this great work, and be able to enjoy all these new Alexa capabilities during my next vacation, and my day-to-day life right here at home.”

Editor's note

This is a reprint of an article that initially ran on the Alexa Skills Kit Blog. To learn more about the technical innovations that helped get Alexa into space and some inspiring facts about the Artemis I mission, visit the Skills Kit blog.

Related content

US, CA, Santa Clara
AWS AI/ML is looking for world class scientists and engineers to join its AI Research and Education group working on foundation models, large-scale representation learning, and distributed learning methods and systems. At AWS AI/ML you will invent, implement, and deploy state of the art machine learning algorithms and systems. You will build prototypes and innovate on new representation learning solutions. You will interact closely with our customers and with the academic and research communities. You will be at the heart of a growing and exciting focus area for AWS and work with other acclaimed engineers and world famous scientists. Large-scale foundation models have been the powerhouse in many of the recent advancements in computer vision, natural language processing, automatic speech recognition, recommendation systems, and time series modeling. Developing such models requires not only skillful modeling in individual modalities, but also understanding of how to synergistically combine them, and how to scale the modeling methods to learn with huge models and on large datasets. Join us to work as an integral part of a team that has diverse experiences in this space. We actively work on these areas: * Hardware-informed efficient model architecture, training objective and curriculum design * Distributed training, accelerated optimization methods * Continual learning, multi-task/meta learning * Reasoning, interactive learning, reinforcement learning * Robustness, privacy, model watermarking * Model compression, distillation, pruning, sparsification, quantization About Us Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 14 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Santa Clara, CA, USA
LU, Luxembourg
Have you ever wondered how Amazon delivers timely and reliably hundreds of millions of packages to customer’s doorsteps? Are you passionate about data and mathematics, and hope to impact the experience of millions of customers? Are you obsessed with designing simple algorithmic solutions to very challenging problems? If so, we look forward to hearing from you! Amazon Transportation Services is seeking Applied (or Research) Scientists. As a key member of the central Research Science Team of ATS operations, these persons will be responsible for designing algorithmic solutions based on data and mathematics for optimizing the middle-mile Amazon transportation network. The job is opened in the EU Headquarters in Luxembourg (alternatively: Barcelona, Berlin or London), designed to maximize interaction with the team and stakeholders, but we will consider applicants with remote work requirements as well. Key job responsibilities Solve complex optimization and machine learning problems using scalable algorithmic techniques. Design and develop efficient research prototypes that address real-world problems in the middle-mile operations of Amazon. Lead complex time-bound, long-term as well as ad-hoc analyses to assist decision making. Communicate to leadership results from business analysis, strategies and tactics. A day in the life You will be brainstorming algorithmic approaches with team-mates to solve challenging problems for the middle-mile operations of Amazon. You will be developing and testing prototype solutions with above algorithmic techniques. You will be scavenging information from the sea of Amazon data to improve these solutions. You will be meeting with other scientists, engineers, stakeholders and customers to enhance the solutions and get them adopted. About the team The Science and Tech team of ATS EU is looking for candidates who are looking to impact the world with their mathematical and data-driven skills. ATS stands for Amazon Transportation Service, we are the middle-mile planners: we carry the packages from the warehouses to the cities in a limited amount of time to enable the “Amazon experience”. As the core research team, we grow with ATS business to support decision making in an increasingly complex ecosystem of a data-driven supply chain and e-commerce giant. We schedule more than 1 million trucks with Amazon shipments annually; our algorithms are key to reducing CO2 emissions, protecting sites from being overwhelmed during peak days, and ensuring a smile on Amazon’s customer lips. Our mathematical algorithms provide confidence in leadership to invest in programs of several hundreds millions euros every year. Above all, we are having fun solving real-world problems, in real-world speed, while failing & learning along the way. We use modular algorithmic designs in the domain of combinatorial optimization, solving complicated generalizations of core OR problems with the right level of decomposition, employing parallelization and approximation algorithms. We use deep learning, bandits, and reinforcement learning to put data into the loop of decision making. We like to learn new techniques to surprise business stakeholders by making possible what they cannot anticipate. For this reason, we work closely with Amazon scholars and experts from Academic institutions. We code our prototypes to be production-ready We prefer provably optimal solutions than heuristics, though we settle for heuristics when performance dictates it. Overall, we appreciate the value of correct modeling. We are open to hiring candidates to work out of one of the following locations: Luxembourg, LUX
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as a Research Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As a Research Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. The position is based in Seattle but will interact with global leaders and teams in Europe, Japan, China, Australia, and other regions. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Herndon
Do you love decomposing problems to develop machine learning (ML) products that impact millions of people around the world? Would you enjoy identifying, defining, and building ML software solutions that revolutionize how businesses operate? The Global Practice Organization in Professional Services at Amazon Web Services (AWS) is looking for a Software Development Engineer II to build, deliver, and maintain complex ML products that delight our customers and raise our performance bar. You’ll design fault-tolerant systems that run at massive scale as we continue to innovate best-in-class services and applications in the AWS Cloud. Key job responsibilities Our ML Engineers collaborate across diverse teams, projects, and environments to have a firsthand impact on our global customer base. You’ll bring a passion for the intersection of software development with generative AI and machine learning. You’ll also: - Solve complex technical problems, often ones not solved before, at every layer of the stack. - Design, implement, test, deploy and maintain innovative ML solutions to transform service performance, durability, cost, and security. - Build high-quality, highly available, always-on products. - Research implementations that deliver the best possible experiences for customers. A day in the life As you design and code solutions to help our team drive efficiencies in ML architecture, you’ll create metrics, implement automation and other improvements, and resolve the root cause of software defects. You’ll also: - Build high-impact ML solutions to deliver to our large customer base. - Participate in design discussions, code review, and communicate with internal and external stakeholders. - Work cross-functionally to help drive business solutions with your technical input. - Work in a startup-like development environment, where you’re always working on the most important stuff. About the team The Global Practice Organization for Analytics is a team inside the AWS Professional Services Organization. Our mission in the Global Practice Organization is to be at the forefront of defining machine learning domain strategy, and ensuring the scale of Professional Services' delivery. We define strategic initiatives, provide domain expertise, and oversee the development of high-quality, repeatable offerings that accelerate customer outcomes. Inclusive Team Culture Here at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 85,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Work/Life Balance Our team puts a high value on work-life harmony. Striking a healthy balance between your personal and professional life is crucial to your happiness and success here. We are a customer-obsessed organization—leaders start with the customer and work backwards. They work vigorously to earn and keep customer trust. As such, this is a customer facing role in a hybrid delivery model. Project engagements include remote delivery methods and onsite engagement that will include travel to customer locations as needed. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded professional and enable them to take on more complex tasks in the future. This is a customer-facing role and you will be required to travel to client locations and deliver professional services as needed. We are open to hiring candidates to work out of one of the following locations: Atlanta, GA, USA | Austin, TX, USA | Boston, MA, USA | Chicago, IL, USA | Herndon, VA, USA | Minneapolis, MN, USA | New York, NC, USA | San Diego, CA, USA | San Francisco, CA, USA | Seattle, WA, USA
US, MA, North Reading
Are you inspired by invention? Is problem solving through teamwork in your DNA? Do you like the idea of seeing how your work impacts the bigger picture? Answer yes to any of these and you’ll fit right in here at Amazon Robotics. We are a smart team of doers that work passionately to apply cutting edge advances in robotics and software to solve real-world challenges that will transform our customers’ experiences in ways we can’t even imagine yet. We invent new improvements every day. We are Amazon Robotics and we will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Amazon Robotics is seeking Applied Science Interns and Co-ops with a passion for robotic research to work on cutting edge algorithms for robotics. Our team works on challenging and high-impact projects within robotics. Examples of projects include allocating resources to complete a million orders a day, coordinating the motion of thousands of robots, autonomous navigation in warehouses, identifying objects and damage, and learning how to grasp all the products Amazon sells. As an Applied Science Intern/Co-op at Amazon Robotics, you will be working on one or more of our robotic technologies such as autonomous mobile robots, robot manipulators, and computer vision identification technologies. The intern/co-op project(s) and the internship/co-op location are determined by the team the student will be working on. Please note that by applying to this role you would be considered for Applied Scientist summer intern, spring co-op, and fall co-op roles on various Amazon Robotics teams. These teams work on robotics research within areas such as computer vision, machine learning, robotic manipulation, navigation, path planning, perception, optimization and more. Learn more about Amazon Robotics: https://amazon.jobs/en/teams/amazon-robotics We are open to hiring candidates to work out of one of the following locations: North Reading, MA, USA | Seattle, WA, USA | Westborough, MA, USA
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best. Key job responsibilities • Develop automated laboratory workflows. • Perform data QC, document results, and communicate to stakeholders. • Maintain updated understanding and knowledge of methods. • Identify and escalate equipment malfunctions; troubleshoot common errors. • Participate in the updating of protocols and database to accurately reflect the current practices. • Maintain equipment and instruments in good operating condition • Adapt to unexpected schedule changes and respond to emergency situations, as needed. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, WA, Seattle
The economics team within Recruiting Engine uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which uses a range of approaches to develop and deliver solutions that measurably achieve this goal. We are looking for an Economist who is able to provide structure around complex business problems, hone those complex problems into specific, scientific questions, and test those questions to generate insights. The ideal candidate will work with various science, engineering, operations and analytics teams to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. She/He/They will produce robust, objective research results and insights which can be communicated to a broad audience inside and outside of Amazon. Ideal candidates will work closely with business partners to develop science that solves the most important business challenges. She/He/They will work well in a team setting with individuals from diverse disciplines and backgrounds. She/He/They will serve as an ambassador for science and a scientific resource for business teams. Ideal candidates will own the development of scientific models and manage the data analysis, modeling, and experimentation that is necessary for estimating and validating the model. They will be customer-centric – clearly communicating scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Seattle, WA, USA
US, WA, Bellevue
We’re seeking a thought leader to direct Generative AI and machine learning initiatives aimed at scaling the $600B+ Amazon ecommerce business. This person will also be a deep learning practitioner/thinker and guide the research in these areas. They’ll also have the ability to drive cutting edge, product oriented research and should have a notable publication record. This intellectual thought leader will help enhance the science in addition to developing the thinking of our team. This leader will direct and shape the science philosophy, planning and strategy for the team, as we explore multi-modal, multi lingual use cases through the use of Generative AI. Joining this team, you’ll experience the benefits of working in a dynamic, entrepreneurial environment, while leveraging the resources of Amazon [Earth's most customer-centric internet company]. About the team The Applied AI team uses advanced ML and Generative AI techniques to help scale the inputs for our large e-commerce business. Scaling in the past was limited by roles that could be done manually, in a timely manner. This is a new focus for our business, and the opportunity is huge! We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Are you excited about developing generative AI and foundation models to revolutionize automation, robotics and computer vision? Are you looking for opportunities to build and deploy them on real problems at truly vast scale? At Amazon Fulfillment Technologies and Robotics we are on a mission to build high-performance autonomous systems that perceive and act to further improve our world-class customer experience - at Amazon scale. We are looking for scientists, engineers and program managers for a variety of roles. The Amazon Robotics software team is seeking a Applied Scientist to focus on large vision and manipulation machine learning models. This includes building multi-viewpoint and time-series computer vision systems. It includes using machine learning to drive hardware movement. It includes building large-scale models using data from many different tasks and scenes. This work spans from basic research such as cross domain training, to experimenting on prototype in the lab, to running wide-scale A/B tests on robots in our facilities. Key job responsibilities * Research vision - Where should we be focusing our efforts * Research delivery – Proving/dis-proving strategies in offline data or in the lab * Production studies - Insights from production data or ad-hoc experimentation. About the team This team invents and runs robots focused on grasping and packing items. These are typically 6-dof style robotic arms. Our work ranges from the long-term-research on basic science to deploying/supporting large production fleets handling billions of items per year. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, VA, Arlington
Amazon launched the Generative AI (GenAI) Innovation Center (GAIIC) in Jun 2023 to help AWS customers accelerate enterprise innovation and success with Generative AI (https://press.aboutamazon.com/2023/6/aws-announces-generative-ai-innovation-center). Customers such as Highspot, Lonely Planet, Ryanair, and Twilio are engaging with the GAI Innovation Center to explore developing generative solutions. GAIIC provides opportunities to innovate in a fast-paced organization that contributes to game-changing projects and technologies that get deployed on devices and in the cloud. As a data scientist at GAIIC, you are proficient in designing and developing advanced Generative AI based solutions to solve diverse customer problems. You will be working with terabytes of text, images, and other types of data to solve real-world problems through Gen AI. You will be working closely with account teams and ML strategists to define the use case, and with other scientists and ML engineers on the team to design experiments, and find new ways to deliver value to the customer. The successful candidate will possess both technical and customer-facing skills that will allow you to be the technical “face” of AWS within our solution providers’ ecosystem/environment as well as directly to end customers. You will be able to drive discussions with senior technical and management personnel within customers and partners. This position requires that the candidate selected be a US Citizen and currently possess and maintain an active Top Secret security clearance. About the team Work/Life Balance Our team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives. Mentorship & Career Growth Our team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Denver, CO, USA