NASA's Orion spacecraft shown splashing down in the Pacific Ocean, west of Baja California, at 9:40 a.m. PST Sunday, Dec. 11.
NASA's Orion spacecraft shown splashing down in the Pacific Ocean, west of Baja California, at 9:40 a.m. PST Sunday, Dec. 11.
NASA

The story behind how Amazon integrated Alexa into NASA’s Orion spacecraft

From physical constraints to acoustic challenges, learn how Amazon collaborated with NASA and Lockheed Martin to get Alexa to work in space.

In September 2018, Amazon’s principal solutions architect Philippe Lantin received a call from his manager.

“He said that there was something unique on the horizon, and that their team was being roped into a one-in-a-lifetime opportunity,” says Lantin.

This was no understatement: on the horizon was an opportunity for Amazon to collaborate with Lockheed Martin Space, and integrate Alexa into NASA’s Orion spacecraft. Orion is the first human-rated spacecraft to visit the moon in more than 40 years.

“NASA is trying to engage the public more as we enter this new era of space travel, where we are setting the stage for extra-planetary exploration,” says Lantin. “Given that over 100 million Alexa-enabled devices have already been sold, having Alexa answer questions like 'Alexa, how far to the moon?' and 'Alexa, how fast is Orion going?' is a great way to get people around the world involved in NASA’s missions.”

Setting up an Echo device on Earth is simple: all you need is a Wi-Fi connection and the Alexa app. However, things are far more complicated in space.

“We had several constraints we had to contend with,” says Lantin.
The Alexa team had to operate within a key physical constraint: the shape of the device. The contours of a smart speaker greatly influences it acoustics. To give just one example, the round shape of the Echo Dot offers a full cavity behind the woofer for a better bass response.

Related content
NASA is using unsupervised learning and anomaly detection to explore the extreme conditions associated with solar superstorms.

However, when it came to NASA’s Orion spacecraft, Alexa’s acoustic engineers had to work with what was provided by Lockheed Martin and NASA.

“We were somewhat limited by the form factor, which was a small briefcase-like enclosure that was 1.5 feet by one foot and about five inches in depth.” says Lantin.

There were other physical constraints. Equipment developed for the mission had to be resilient to extreme shocks and vibrations, be at least minimally resistant to radiation emissions in space, and utilize highly specific and custom-built components such as power and data cables.

Limited Internet connectivity

The team also had to deal with issues related to the lack of Internet connectivity. Typically, Echo devices use on-device keyword spotting designed to detect when a customer says the wake word. This on-device buffer exists in temporary memory. After the wake word is detected, the device streams the audio to the cloud for speech recognition and natural language processing.

Orion components

“However, for the Orion mission, our ability to communicate with the Alexa cloud was severely constrained,” says Lantin. “NASA’s spacecraft uses the Deep Space Network to communicate with earth. The bandwidth available to us on the downlink connection is slightly better than dial-up modem speeds with latencies of up to five seconds. To further complicate matters, NASA prioritizes traffic for navigation and telemetry for the first payload — traffic for Alexa was consigned to the secondary payload.”

The team also wanted to demonstrate a fully autonomous experience, one that can be used in future missions where Earth connectivity is no longer a practical option for real-time communications. They used Alexa Local Voice Control to get around the limited internet connectivity. Alexa Local Voice control allows select devices to process voice commands locally, rather than sending information to the cloud.

Lantin says that while the team was motivated by demonstrating technology leadership and scientific innovation in a very challenging environment, the real motivator was making a difference in the lives of millions of customers at home on earth.

“At Amazon, we take pride in delivering customer-focused science,” says Lantin. “That was a huge motivator for us at every step along the way. Consider the innovations we drove to Alexa Local Voice Control. These improvements will allow people on earth to do so much more with Alexa in situations where they have limited or no Internet connectivity. Think about when you are in a car and passing through a tunnel, or driving to a remote camping site. You can do things like tune the radio, turn on the AC and continue to use voice commands, even if you have a feeble signal or no cellular connection.”

Lantin says that the acoustic innovations enabled for Orion will also translate directly into improved listening experiences for people interacting with the mission on earth.

Rohit Prasad, Alexa senior vice president and head scientist, on the initial collaboration with Lockheed Martin

“We are planning to have celebrities, politicians, STEM students and a variety of other personalities interacting with Alexa,” says Lantin. “ And so, we also spent a good deal of time thinking about what people might want to ask Alexa about during the mission.”

The nuances of acoustics aboard Orion

Scott Isabelle is a solutions architect at Amazon. Prior to Amazon, Isabelle was a distinguished member of the technical staff at Motorola, where among other projects, he developed systems for enhancing voice quality in mobile devices, methods for generating adaptive ringtones, and a two-microphone system for noise suppression.

“One of the most important things for a voice AI is being in an environment where it is able to pick up your voice,” says Isabelle.

Related content
Parallel processing of microphone inputs and separate detectors for periodicity and dynamics improve performance.

However, this is easier said than done on Orion, where the conical shape of the space capsule, and its metallic surfaces result in increased reverberation.

“The voice can keep bouncing around losing very little energy. This wouldn’t happen in a typical room where soft material like curtains and sofa cushions can absorb some of the sound. In the capsule, the reverberations off the metal surfaces can play up the wrong frequencies that are critical to automatic speech recognition. This can make it really difficult for Alexa to pick up wake word invocations. ”

Alexa also has to contend with increased noise levels aboard Orion.

NASA | Exploration Mission-1 — pushing farther into deep space

The ideal signal to noise ratio (SNR) for systems involving intelligent voice assistants is in the range 20 to 30 decibels (dB). To place this in context, a SNR of 35 dB is what you would find in a face-to-face conversation between two people standing one meter apart in a typical room (higher SNRs are better). However, the SNR onboard the Orion capsule can be much lower than 20 dB, posing an acoustic challenge.

To enhance the comfort of astronauts during crewed missions, NASA would ordinarily place acoustic blankets to damp down the reverberation in the hard-walled cabin, and some of the noise created by engines and pumps.

“However, because this is an uncrewed mission we have to work within an environment with more reverberation and noise than we would like,” says Isabelle.

re:MARS 2022 — Open space: A revolution in robots for space exploration

There’s another challenge that results from the lack of humans on board. For Orion, commands to Alexa have to be sent from ground control. The low-bandwidth connections utilized for the transmission can make it challenging to transmit voices at the wide range of frequencies essential for differentiating between sounds.

During a typical phone call, our voice is typically transmitted in the narrow band, which ranges from 300 HZ to 3,000 HZ. For Alexa to make out individual words aboard the noisier environment of the space capsule, the voice would have to be transmitted at 8,000 HZ.

“Voice commands from mission control are transmitted to Alexa via a speaker,” says Isabelle. “Flight-qualified speakers are typically designed for narrow-band communications. And so for this mission we were required to use a speaker that could operate in the flight environment.”

Alexa in Space | Alexa Innovators | Build with Alexa

The team relied on what Isabelle calls “brute force” to overcome these acoustic challenges.

Related content
A combination of audio and visual signals guide the device’s movement, so the screen is always in view.

“We designed the speaker playback system to play at extremely loud volumes, which allowed us to increase the SNR to where we wanted it to be.”

The team also took advantage of the physical form factor of Alexa on board to overcome the challenges presented by the noisy environment. The speakers, the light ring and the microphones in the briefcase-like enclosure for Alexa are close to each other, which allows acoustic engineers to overcome some of the obstacles presented by the background noise and reverberation.

Finally, the team deployed two microphones in combination with an array processing algorithm. The latter combined the signals from the two microphones in a way that helps Alexa make sense of the commands being issued from mission control. Because the speakers and microphones are in fixed positions relative to each other — as opposed to a room, where people can be located in any number of locations — the algorithms could be more easily designed to distinguish between speech and the surrounding noise.

Related content
Zoox principal software engineer Olivier Toupet on company’s autonomous robotaxi technology

While the Orion mission will not have any crew members on board, the initial mission will lay the groundwork for Alexa to be integrated into future crewed missions — to the moon, Mars, and beyond. Having Alexa onboard in these future missions would allow crew members to be more efficient in day-to-day tasks, and benefit from the comforts of having Alexa on board such as the ability to play relaxing music and to keep in touch with family and friends back home.

Future crewed missions would have their own unique set of challenges, where Alexa would have to respond to commands from astronauts, who might (literally) be free-floating at multiple points within the capsule. Isabelle and Lantin are already looking forward to overcoming the challenges enabled by crewed missions.

“For someone who grew up watching Star Trek, working on this project has been a dream come true,” says Lantin. “It’s great to be able to build the future. But it’s just as exciting to be able to draw on all of this great work, and be able to enjoy all these new Alexa capabilities during my next vacation, and my day-to-day life right here at home.”

Editor's note

This is a reprint of an article that initially ran on the Alexa Skills Kit Blog. To learn more about the technical innovations that helped get Alexa into space and some inspiring facts about the Artemis I mission, visit the Skills Kit blog.

Research areas

Related content

US, WA, Seattle
Are you a brilliant mind seeking to push the boundaries of what's possible with intelligent robotics? Join our elite team of researchers and engineers - led by Pieter Abeel, Rocky Duan, and Peter Chen - at the forefront of applied science, where we're harnessing the latest advancements in large language models (LLMs) and generative AI to reshape the world of robotics and unlock new realms of innovation. As an Applied Science Intern, you'll have the unique opportunity to work alongside world-renowned experts, gaining invaluable hands-on experience with cutting-edge robotics technologies. You'll dive deep into exciting research projects at the intersection of AI and robotics. This internship is not just about executing tasks – it's about being a driving force behind groundbreaking discoveries. You'll collaborate with cross-functional teams, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning to tackle real-world problems and deliver impactful solutions. Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Join us at the forefront of applied robotics and AI, where your contributions will shape the future of intelligent systems and propel humanity forward. Seize this extraordinary opportunity to learn, grow, and leave an indelible mark on the world of technology. Amazon has positions available in San Francisco, CA and Seattle, WA. The ideal candidate should possess: - Strong background in machine learning, deep learning, and/or robotics - Publication record at science conferences such as NeurIPS, CVPR, ICRA, RSS, CoRL, and ICLR. - Experience in areas such as multimodal LLMs, world models, image/video tokenization, real2Sim/Sim2real transfer, bimanual manipulation, open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, and end-to-end vision-language-action models. - Proficiency in Python, Experience with PyTorch or JAX - Excellent problem-solving skills, attention to detail, and the ability to work collaboratively in a team Join us at the forefront of applied robotics and AI, and be a part of the team that's reshaping the future of intelligent systems. Apply now and embark on an extraordinary journey of discovery and innovation! Key job responsibilities - Develop novel, scalable algorithms and modeling techniques that advance the state-of-the-art in areas at the intersection of LLMs and generative AI for robotics - Tackle challenging, groundbreaking research problems on production-scale data, with a focus on robotic perception, manipulation, and control - Collaborate with cross-functional teams to solve complex business problems, leveraging your expertise in areas such as deep learning, reinforcement learning, computer vision, and motion planning - Demonstrate the ability to work independently, thrive in a fast-paced, ever-changing environment, and communicate effectively with diverse stakeholders
US, WA, Seattle
Join the next revolution in robotics at Amazon's Frontier AI & Robotics team, where you'll work alongside world-renowned AI pioneers like Pieter Abbeel, Rocky Duan, and Peter Chen to lead key initiatives in robotic intelligence. As a Senior Applied Scientist, you'll spearhead the development of breakthrough foundation models that enable robots to perceive, understand, and interact with the world in unprecedented ways. You'll drive technical excellence in areas such as perception, manipulation, scence understanding, sim2real transfer, multi-modal foundation models, and multi-task learning, designing novel algorithms that bridge the gap between cutting-edge research and real-world deployment at Amazon scale. In this role, you'll combine hands-on technical work with scientific leadership, ensuring your team delivers robust solutions for dynamic real-world environments. You'll leverage Amazon's vast computational resources to tackle ambitious problems in areas like very large multi-modal robotic foundation models and efficient, promptable model architectures that can scale across diverse robotic applications. Key job responsibilities - Lead technical initiatives in robotics foundation models, driving breakthrough approaches through hands-on research and development in areas like open-vocabulary panoptic scene understanding, scaling up multi-modal LLMs, sim2real/real2sim techniques, end-to-end vision-language-action models, efficient model inference, video tokenization - Design and implement novel deep learning architectures that push the boundaries of what robots can understand and accomplish - Guide technical direction for specific research initiatives, ensuring robust performance in production environments - Mentor fellow scientists while maintaining strong individual technical contributions - Collaborate with engineering teams to optimize and scale models for real-world applications - Influence technical decisions and implementation strategies within your area of focus A day in the life - Develop and implement novel foundation model architectures, working hands-on with our extensive compute infrastructure - Guide fellow scientists in solving complex technical challenges, from sim2real transfer to efficient multi-task learning - Lead focused technical initiatives from conception through deployment, ensuring successful integration with production systems - Drive technical discussions within your team and with key stakeholders - Conduct experiments and prototype new ideas using our massive compute cluster - Mentor team members while maintaining significant hands-on contribution to technical solutions Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply! About the team At Frontier AI & Robotics, we're not just advancing robotics – we're reimagining it from the ground up. Our team, led by pioneering AI researchers Pieter Abbeel, Rocky Duan, and Peter Chen, is building the future of intelligent robotics through groundbreaking foundation models and end-to-end learned systems. We tackle some of the most challenging problems in AI and robotics, from developing sophisticated perception systems to creating adaptive manipulation strategies that work in complex, real-world scenarios. What sets us apart is our unique combination of ambitious research vision and practical impact. We leverage Amazon's massive computational infrastructure and rich real-world datasets to train and deploy state-of-the-art foundation models. Our work spans the full spectrum of robotics intelligence – from multimodal perception using images, videos, and sensor data, to sophisticated manipulation strategies that can handle diverse real-world scenarios. We're building systems that don't just work in the lab, but scale to meet the demands of Amazon's global operations. Join us if you're excited about pushing the boundaries of what's possible in robotics, working with world-class researchers, and seeing your innovations deployed at unprecedented scale.
IL, Haifa
We’re looking for a Principal Applied Scientist in the Personalization team with experience in generative AI and large models. You will be responsible for developing and disseminating customer-facing personalized recommendation models. This is a hands-on role with global impact working with a team of world-class engineers and scientists across the wider organization. You will lead the design of machine learning models that scale to very large quantities of data, and serve high-scale low-latency recommendations to all customers worldwide. You will embody scientific rigor, designing and executing experiments to demonstrate the technical efficacy and business value of your methods. You will work alongside a science team to delight customers by aiding in recommendations relevancy, and raise the profile of Amazon as a global leader in machine learning and personalization. Successful candidates will have strong technical ability, focus on customers by applying a customer-first approach, excellent teamwork and communication skills, and a motivation to achieve results in a fast-paced environment. Our position offers exceptional opportunities for every candidate to grow their technical and non-technical skills. If you are selected, you have the opportunity to make a difference to our business by designing and building state of the art machine learning systems on big data, leveraging Amazon’s vast computing resources (AWS), working on exciting and challenging projects, and delivering meaningful results to customers world-wide. Key job responsibilities Develop machine learning algorithms for high-scale recommendations problem Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative analysis and business judgement. Collaborate with software engineers to integrate successful experimental results into large-scale, highly complex Amazon production systems capable of handling 100,000s of transactions per second at low latency. Report results in a manner which is both statistically rigorous and compellingly relevant, exemplifying good scientific practice in a business environment.
US, WA, Seattle
The Private Brands Discovery team designs innovative machine learning solutions to drive customer awareness for Amazon’s own brands and help customers discover products they love. Private Brands Discovery is an interdisciplinary team of Scientists and Engineers, who incubate and build disruptive solutions using cutting-edge technology to solve some of the toughest science problems at Amazon. To this end, the team employs methods from Natural Language Processing, Deep learning, multi-armed bandits and reinforcement learning, Bayesian Optimization, causal and statistical inference, and econometrics to drive discovery across the customer journey. Our solutions are crucial for the success of Amazon’s own brands and serve as a beacon for discovery solutions across Amazon. This is a high visibility opportunity for someone who wants to have business impact, dive deep into large-scale problems, enable measurable actions on the consumer economy, and work closely with scientists and engineers. As a scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.. With a focus on bias for action, this individual will be able to work equally well with Science, Engineering, Economics and business teams. Key job responsibilities - 5+ yrs of relevant, broad research experience after PhD degree or equivalent. - Advanced expertise and knowledge of applying observational causal interference methods - Strong background in statistics methodology, applications to business problems, and/or big data. - Ability to work in a fast-paced business environment. - Strong research track record. - Effective verbal and written communications skills with both economists and non-economist audiences.
DE, Aachen
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to lead the development of novel algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
The AWS Marketplace & Partner Services Science team is hiring an Applied Scientist to develop science products that support AWS initiatives to grow AWS Partners. The team is seeking candidates with strong background in machine learning and engineering, creativity, curiosity, and great business judgment. As an applied scientist on the team, you will work on targeting and lead prioritization related AI/ML products, recommendation systems, and deliver them into the production ecosystem. You are comfortable with ambiguity and have a deep understanding of ML algorithms and an analytical mindset. You are capable of summarizing complex data and models through clear visual and written explanations. You thrive in a collaborative environment and are passionate about learning. Key job responsibilities - Work with scientists, product managers and engineers to deliver high-quality science products - Experiment with large amounts of data to deliver the best possible science solutions - Design, build, and deploy innovative ML solutions to impact AWS Co-Sell initiatives About the team The AWS Marketplace & Partner Services team is the center of Analytics, Insights, and Science supporting the AWS Specialist Partner Organization on its mission to provide customers with an outstanding experience while working with AWS partners. The Science team supports science models and recommendation systems that are deployed directly to AWS Customers, AWS partners, and internal AWS Sellers.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You'll be working with talented scientists and engineers to innovate on behalf of our customers. If you're fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey! Key job responsibilities We seek strong Applied Scientists with domain expertise in machine learning and deep learning, transformers, generative models, large language models, computer vision and multimodal models. You will devise innovative solutions at scale, pushing the technological and science boundaries. You will guide the design, modeling, and architectural choices of state-of-the-art large language models and multimodal models. You will devise and implement new algorithms and new learning strategies and paradigms. You will be technically hands-on and drive the execution from ideation to productionization. You will work in collaborative environment with other technical and business leaders, to innovate on behalf of the customer.
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models, and are searching for pioneers who are passionate about technology, innovation, and customer experience, and are ready to make a lasting impact on the industry. You’ll be working with talented scientists, engineers, and technical program managers (TPM) to innovate on behalf of our customers. If you’re fired up about being part of a dynamic, driven team, then this is your moment to join us on this exciting journey!
US, CA, East Palo Alto
The Customer Engagement Technology team leads AI/LLM-driven customer experience transformation using task-oriented dialogue systems. We develop multi-modal, multi-turn, goal-oriented dialog systems that can handle customer issues at Amazon scale across multiple languages. These systems are designed to adapt to changing company policies and invoke correct APIs to automate solutions to customer problems. Additionally, we enhance associate productivity through response/action recommendation, summarization to capture conversation context succinctly, retrieving precise information from documents to provide useful information to the agent, and machine translation to facilitate smoother conversations when the customer and agent speak different languages. Key job responsibilities Research and development of LLM-based chatbots and conversational AI systems for customer service applications. Design and implement state-of-the-art NLP and ML models for tasks such as language understanding, dialogue management, and response generation. Collaborate with cross-functional teams, including data scientists, software engineers, and product managers, to integrate LLM-based solutions into Amazon's customer service platforms. 4. Develop and implement strategies for data collection, annotation, and model training to ensure high-quality and robust performance of the chatbots. Conduct experiments and evaluations to measure the performance of the developed models and systems, and identify areas for improvement. Stay up-to-date with the latest advancements in NLP, LLMs, and conversational AI, and explore opportunities to incorporate new techniques and technologies into Amazon's customer service solutions. Collaborate with internal and external research communities, participate in conferences and publications, and contribute to the advancement of the field. A day in the life Amazon offers a full range of benefits that support you and eligible family members, including domestic partners and their children. Benefits can vary by location, the number of regularly scheduled hours you work, length of employment, and job status such as seasonal or temporary employment. The benefits that generally apply to regular, full-time employees include: 1. Medical, Dental, and Vision Coverage 2. Maternity and Parental Leave Options 3. Paid Time Off (PTO) 4. 401(k) Plan If you are not sure that every qualification on the list above describes you exactly, we'd still love to hear from you! At Amazon, we value people with unique backgrounds, experiences, and skillsets. If you’re passionate about this role and want to make an impact on a global scale, please apply!
US, MA, Boston
The Amazon Dash Cart team is seeking a highly motivated Research Scientist (Level 5) to join our team that is focused on building new technologies for grocery stores. We are a team of scientists invent new algorithms (especially artificial intelligence, computer vision and sensor fusion) to improve customer experiences in grocery shopping. The Amazon Dash Cart is a smart shopping cart that uses sensors to keep track of what a shopper has added. Once done, they can bypass the checkout lane and just walk out. The cart comes with convenience features like a store map, a basket that can weigh produce, and product recommendations. Amazon Dash Cart’s are available at Amazon Fresh, Whole Foods. Learn more about the Dash Cart at https://www.amazon.com/b?ie=UTF8&node=21289116011. Key job responsibilities As a research scientist, you will help solve a variety of technical challenges and mentor other engineers. You will play an active role in translating business and functional requirements into concrete deliverables and build quick prototypes or proofs of concept in partnership with other technology leaders within the team. You will tackle challenging, novel situations every day and given the size of this initiative, you’ll have the opportunity to work with multiple technical teams at Amazon in different locations. You should be comfortable with a degree of ambiguity that’s higher than most projects and relish the idea of solving problems that, frankly, haven’t been solved before - anywhere. Along the way, we guarantee that you’ll learn a ton, have fun and make a positive impact on millions of people. About the team Amazon Dash cart allows shoppers to checkout without lines — you just place the items in the cart and the cart will take care of the rest. When you’re done shopping, you leave the store through a designated dash lane. We charge the payment method in your Amazon account as you walk through the dash lane and send you a receipt. Check it out at https://www.amazon.com/b?ie=UTF8&node=21289116011. Designed and custom-built by Amazonians, our Dash cart uses a variety of technologies including computer vision, sensor fusion, and advanced machine learning.