A quick guide to Amazon’s 40-plus papers at Interspeech 2022

Speech recognition and text-to-speech predominate, but other topics include audio watermarking, automatic dubbing, and compression.

Of Amazon’s more than 40 papers at this year’s Interspeech, automatic speech recognition and text-to-speech account for about half. But the others cover a range of topics, from acoustic watermarking and automatic dubbing to quantization and fairness.

Acoustic watermarking

Practical over-the-air perceptual acoustic watermarking
Ameya Agaskar

Audio classification

CNN-based audio event recognition for automated violence classification and rating for Prime Video content
Tarun Gupta, Mayank Sharma, Kenny Qiu, Xiang Hao, Raffay Hamid

Impact of acoustic event tagging on scene classification in a multi-task learning framework
Rahil Parikh, Harshavardhan Sundar, Ming Sun, Chao Wang, Spyros Matsoukas

Automatic dubbing

Isochrony-aware neural machine translation for automatic dubbing
Derek Tam, Surafel Melaku Lakew, Yogesh Virkar, Prashant Mathur, Marcello Federico

Prosodic alignment for off-screen automatic dubbing
Yogesh Virkar, Marcello Federico, Robert Enyedi, Roberto Barra-Chicote

Automatic speech recognition

Compute cost amortized transformer for streaming ASR
Yi Xie, Jonathan Macoskey, Martin Radfar, Feng-Ju Chang, Brian King, Ariya Rastrow, Athanasios Mouchtaris, Grant Strimel

Cost amortized Transformer.png
"Compute cost amortized Transformer for streaming ASR" proposes a mechanism that toggles components of Transformer blocks on and off to use computational resources more efficiently.

Content-context factorized representations for automated speech recognition
David M. Chan, Shalini Ghosh

ConvRNN-T: Convolutional augmented recurrent neural network transducers for streaming speech recognition
Martin Radfar, Rohit Barnwal, Rupak Vignesh Swaminathan, Feng-Ju Chang, Grant Strimel, Nathan Susanj, Athanasios Mouchtaris

Directed speech separation for automatic speech recognition of long-form conversational speech
Rohit Paturi, Sundararajan Srinivasan, Katrin Kirchhoff, Daniel Garcia-Romero

Domain prompts: Towards memory and compute efficient domain adaptation of ASR systems
Saket Dingliwa, Ashish Shenoy, Sravan Bodapati, Ankur Gandhe, Ravi Teja Gadde, Katrin Kirchhoff

Incremental learning for RNN-Transducer based speech recognition models
Deepak Baby, Pasquale D'Alterio, Valentin Mendelev

Knowledge distillation via module replacing for automatic speech recognition with recurrent neural network transducer
Kaiqi Zhao, Hieu Duy Nguyen, Animesh Jain, Nathan Susanj, Athanasios Mouchtaris, Lokesh Gupta, Ming Zhao

Learning to rank with BERT-based confidence models in ASR rescoring
Ting-Wei Wu, I-FAN CHEN, Ankur Gandhe

Reducing geographic disparities in automatic speech recognition via elastic weight consolidation
Viet Anh Trinh, Pegah Ghahremani, Brian King, Jasha Droppo, Andreas Stolcke, Roland Maas

RefTextLAS: Reference text biased listen, attend, and spell model for accurate reading evaluation
Phani Sankar Nidadavolu, Na Xu, Nick Jutila, Ravi Teja Gadde, Aswarth Abhilash Dara, Joseph Savold, Sapan Patel, Aaron Hoff, Veerdhawal Pande, Kevin Crews, Ankur Gandhe, Ariya Rastrow, Roland Maas

RNN-T lattice enhancement by grafting of pruned paths
Mirek Novak, Pavlos Papadopoulos

Using data augmentation and consistency regularization to improve semi-supervised speech recognition
Ashtosh Sapru

Dialogue

Contextual acoustic barge in classification for spoken dialog systems
Dhanush Bekal, Sundararajan Srinivasan, Sravan Bodapati, Srikanth Ronanki, Katrin Kirchhoff

Adversarial reweighting.png
The method presented in "Adversarial reweighting for speaker verification fairness" uses an adversarial network to identify underperforming groups in a speaker verification dataset (green) and adjusts their contribution to the training loss (bottom).

Fairness

Toward fairness in speech recognition: Discovery and mitigation of performance disparities
Pranav Dheram, Murugesan Ramakrishnan, Anirudh Raju, I-Fan Chen, Brian King, Katherine Powell, Melissa Saboowala, Karan Shetty, Andreas Stolcke

Keyword spotting

Latency control for keyword spotting
Christin Jose, Joe Wang, Grant Strimel, Mohammad Omar Khursheed, Yuriy Mishchenko, Brian Kulis

Language identification

A multimodal strategy for singing language identification
Wo Jae Lee, Emanuele Coviello

Multidevice processing

Challenges and opportunities in multi-device speech processing
Gregory Ciccarelli, Jarred Barber, Arun Nair, Israel Cohen, Tao Zhang

Multiparty speech

Separator-transducer-segmenter: Streaming recognition and segmentation of multi-party speech
Ilya Sklyar, Anna Piunova, Christian Osendorfer

Natural-language understanding

Phonetic embedding for ASR robustness in entity resolution
Xiaozhou Zhou, Ruying Bao, William M. Campbell

Quantization

Squashed weight distribution for low bit quantization of deep models
Nikko Ström, Haidar Khan, Wael Hamza

Sub-8-bit quantization aware training for 8-bit neural network accelerator with on device speech recognition
Kai Zhen, Hieu Duy Nguyen, Raviteja Chinta, Nathan Susanj, Athanasios Mouchtaris, Tariq Afzal, Ariya Rastrow

Sub-8-bit quantization.png
The training behavior of the algorithm proposed in "Sub-8-bit quantization aware training for 8-bit neural network accelerator with on device speech recognition", in which weights are optimized to lower quantization loss.

Signal processing

Clock skew robust acoustic echo cancellation
Karim Helwani, Erfan Soltanmohammadi, Michael M. Goodwin, Arvindh Krishnaswamy

Real-time packet loss concealment with mixed generative and predictive model
Jean-Marc Valin, Ahmed Mustafa, Christopher Montgomery, Timothy B. Terriberry, Michael Klingbeil, Paris Smaragdis, Arvindh Krishnaswamy

Speaker identification/verification

Adversarial reweighting for speaker verification fairness
Minho Jin, Chelsea J.-T. Ju, Zeya Chen, Yi Chieh Liu, Jasha Droppo, Andreas Stolcke

Graph-based multi-view fusion and local adaptation: Mitigating within household confusability for speaker identification
Long Chen, Yixiong Meng, Venkatesh Ravichandran, Andreas Stolcke

Graph fusion and fairness.png
The method proposed in "Graph-based multi-view fusion and local adaptation" propagates labels across a graph whose nodes represent utterances and whose weighted edges quantify the similarity between utterances.

Spoken-language understanding

Learning under label noise for robust spoken language understanding systems
Anoop Kumar, Pankaj Sharma, Aravind Illa, Sriram Venkatapathy, Subhrangshu Nandi, Pritam Varma, Anurag Dwarakanath, Aram Galstyan

On joint training with interfaces for spoken language understanding
Anirudh Raju, Milind Rao, Gautam Tiwari, Pranav Dheram, Bryan Anderson, Zhe Zhang, Chul Lee, Bach Bui, Ariya Rastrow

Text-to-speech

Automatic evaluation of speaker similarity
Kamil Deja, Ariadna Sanchez, Julian Roth, Marius Cotescu

CopyCat2: A single model for multi-speaker TTS and many-to-many fine-grained prosody transfer
Sri Karlapati, Penny Karanasou, Mateusz Lajszczak, Ammar Abbas, Alexis Moinet, Peter Makarov, Ray Li, Arent van Korlaar, Simon Slangen, Thomas Drugman

Creating new voices.png
Voices created through the method presented in "Creating new voices using normalizing flows" (green) are spread across the embedding space of voices from the training set (blue), confirming that the method can generate a variety of new voices.

Creating new voices using normalizing flows
Piotr Biliński, Tom Merritt, Abdelhamid Ezzerg, Kamil Pokora, Sebastian Cygert, Kayoko Yanagisawa, Roberto Barra-Chicote, Daniel Korzekwa

Cross-lingual style transfer with conditional prior VAE and style loss
Dino Ratcliffe, You Wang, Alex Mansbridge, Penny Karanasou, Alexis Moinet, Marius Cotescu

End-to-end LPCNet: A neural vocoder with fully-differentiable LPC estimation
Krishna Subramani, Jean-Marc Valin, Umut Isik, Paris Smaragdis, Arvindh Krishnaswamy

Expressive, variable, and controllable duration modelling in TTS
Ammar Abbas, Tom Merritt, Alexis Moinet, Sri Karlapati, Ewa Muszynska, Simon Slangen, Elia Gatti, Thomas Drugman

GlowVC: Mel-spectrogram space disentangling model for language-independent text-free voice conversion
Magdalena Proszewska, Grzegorz Beringer, Daniel Saez Trigueros, Tom Merritt, Abdelhamid Ezzerg, Roberto Barra-Chicote

L2-GEN: A neural phoneme paraphrasing approach to L2 speech synthesis for mispronunciation diagnosis
Daniel Zhang, Ashwinkumar Ganesan, Sarah Campbell, Daniel Korzekwa

Low data? No problem: low resource, language-agnostic conversational text-to-speech via F0- conditioned data augmentation
Giulia Comini, Goeric Huybrechts, Manuel Sam Ribeiro, Adam Gabrys, Jaime Lorenzo Trueba

Mix and match: An empirical study on training corpus composition for polyglot text-to-speech (TTS)
Ziyao Zhang, Alessio Falai, Ariadna Sanchez, Orazio Angelini, Kayoko Yanagisawa

Simple and effective multi-sentence TTS with expressive and coherent prosody
Peter Makarov, Ammar Abbas, Mateusz Lajszczak, Arnaud Joly, Sri Karlapati, Alexis Moinet, Thomas Drugman, Penny Karanasou

Unify and conquer: How phonetic feature representation affects polyglot text-to-speech (TTS)
Ariadna Sanchez, Alessio Falai, Ziyao Zhang, Orazio Angelini, Kayoko Yanagisawa

Research areas

Related content

US, NY, New York
Are you a passionate Applied Scientist (AS) ready to shape the future of digital content creation? At Amazon, we're building Earth's most desired destination for creators to monetize their unique skills, inspire the next generation of customers, and help brands expand their reach. We build innovative products and experiences that drive growth for creators across Amazon's ecosystem. Our team owns the entire Creator product suite, ensuring a cohesive experience, optimizing compensation structures, and launching features that help creators achieve both monetary and non-monetary goals. Key job responsibilities As an AS on our team, you will: - Handle challenging problems that directly impact millions of creators and customers - Independently collect and analyze data - Develop and deliver scalable predictive models, using any necessary programming, machine learning, and statistical analysis software - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Participate in design and implementation across teams to contribute to initiatives and develop optimal solutions that benefit the creators organization The successful candidate is a self-starter, comfortable with a dynamic, fast-paced environment, and able to think big while paying careful attention to detail. You have deep knowledge of an area/multiple areas of science, with a track record of applying this knowledge to deliver science solutions in a business setting and a demonstrated ability to operate at scale. You excel in a culture of invention and collaboration.
US, CA, San Francisco
Amazon has launched a new research lab in San Francisco to develop foundational capabilities for useful AI agents. We’re enabling practical AI to make our customers more productive, empowered, and fulfilled. In particular, our work combines large language models (LLMs) with reinforcement learning (RL) to solve reasoning, planning, and world modeling in both virtual and physical environments. Our research builds on that of Amazon’s broader AGI organization, which recently introduced Amazon Nova, a new generation of state-of-the-art foundation models (FMs). Key job responsibilities You will contribute directly to AI agent development in an engineering management role: leading a software development team focused on our internal platform for acquiring agentic experience at large scale. You will help set direction, align the team’s goals with the broader lab, mentor team members, recruit great people, and stay technically involved. You will be hired as a Member of Technical Staff. About the team Our lab is a small, talent-dense team with the resources and scale of Amazon. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up!
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. Key job responsibilities As an Applied Scientist, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create technical roadmaps and drive production level projects that will support Amazon Science. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. About the team The Automated Performance Evaluation (APE) team is a hybrid team of Applied Scientists and Software Development Engineers who develop, deploy and own end-to-end machine learning services for use in the HR and Recruiting functions at Amazon.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video subscriptions such as Apple TV+, HBO Max, Peacock, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video team member, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities As an Applied Scientist at Prime Video, you will have end-to-end ownership of the product, related research and experimentation, applying advanced machine learning techniques in computer vision (CV), Generative AI, multimedia understanding and so on. You’ll work on diverse projects that enhance Prime Video’s content localization, image/video understanding, and content personalization, driving impactful innovations for our global audience. Other responsibilities include: - Research and develop generative models for controllable synthesis across images, video, vector graphics, and multimedia - Innovate in advanced diffusion and flow-based methods (e.g., inverse flow matching, parameter efficient training, guided sampling, test-time adaptation) to improve efficiency, controllability, and scalability. - Advance visual grounding, depth and 3D estimation, segmentation, and matting for integration into pre-visualization, compositing, VFX, and post-production pipelines. - Design multimodal GenAI workflows including visual-language model tooling, structured prompt orchestration, agentic pipelines. A day in the life Prime Video is pioneering the use of Generative AI to empower the next generation of creatives. Our mission is to make world-class media creation accessible, scalable, and efficient. We are seeking an Applied Scientist to advance the state of the art in Generative AI and to deliver these innovations as production-ready systems at Amazon scale. Your work will give creators unprecedented freedom and control while driving new efficiencies across Prime Video’s global content and marketing pipelines. This is a newly formed team within Prime Video Science!
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional early career research scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Key Job Responsibilities: • Understand and contribute to model compression techniques (quantization, pruning, distillation, etc.) while developing theoretical understanding of Information Theory and Deep Learning fundamentals • Work with senior researchers to optimize Gen AI models for edge platforms using Amazon's Neural Edge Engine • Study and apply first principles of Information Theory, Scientific Computing, and Non-Equilibrium Thermodynamics to model optimization problems • Assist in research projects involving custom Gen AI model development, aiming to improve SOTA under mentorship • Co-author research papers for top-tier conferences (NeurIPS, ICLR, MLSys) and present at internal research meetings • Collaborate with compiler engineers, Applied Scientists, and Hardware Architects while learning about production ML systems • Participate in reading groups and research discussions to build expertise in efficient AI and edge computing
US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with talented peers to support the development of algorithms and modeling techniques, to advance the state of the art with LLMs. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Principal Quantum Research Scientist. You will join a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers working at the forefront of quantum computing. You should have a deep and broad knowledge of experimental quantum computing and a track record of original scientific contributions. We are looking for candidates with strong engineering principles, resourcefulness and a bias for action, superior problem solving, and excellent communication skills. Working effectively within a team environment is essential. As principal research scientist you will be expected to lead new ideas and stay abreast of the field of experimental quantum computation. Key job responsibilities Key job responsibilities In this role, you will work on improvements in all components of SC qubits quantum hardware, from qubits and resonators to quantum-limited amplifiers. You will also work on their integration into multiqubit chips. This will require designing new experiments, collecting statistically significant data through automation, analyzing the results, and summarizing conclusions in written form. Finally, you will work with hardware engineers, material scientists, and circuit designers to advance the state of the art of SC qubits hardware. About the team About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Palo Alto
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Lead business, science and engineering strategy and roadmap for Sponsored Products Agentic Advertiser Guidance. - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.
US, NY, New York
We are looking for a passionate Applied Scientist to help pioneer the next generation of agentic AI applications for Amazon advertisers. In this role, you will design agentic architectures, develop tools and datasets, and contribute to building systems that can reason, plan, and act autonomously across complex advertiser workflows. You will work at the forefront of applied AI, developing methods for fine-tuning, reinforcement learning, and preference optimization, while helping create evaluation frameworks that ensure safety, reliability, and trust at scale. You will work backwards from the needs of advertisers—delivering customer-facing products that directly help them create, optimize, and grow their campaigns. Beyond building models, you will advance the agent ecosystem by experimenting with and applying core primitives such as tool orchestration, multi-step reasoning, and adaptive preference-driven behavior. This role requires working independently on ambiguous technical problems, collaborating closely with scientists, engineers, and product managers to bring innovative solutions into production. Key job responsibilities - Design and build agents to guide advertisers in conversational and non-conversational experience. - Design and implement advanced model and agent optimization techniques, including supervised fine-tuning, instruction tuning and preference optimization (e.g., DPO/IPO). - Curate datasets and tools for MCP. - Build evaluation pipelines for agent workflows, including automated benchmarks, multi-step reasoning tests, and safety guardrails. - Develop agentic architectures (e.g., CoT, ToT, ReAct) that integrate planning, tool use, and long-horizon reasoning. - Prototype and iterate on multi-agent orchestration frameworks and workflows. - Collaborate with peers across engineering and product to bring scientific innovations into production. - Stay current with the latest research in LLMs, RL, and agent-based AI, and translate findings into practical applications. About the team The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through the latest generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Advertiser Guidance team within Sponsored Products and Brands is focused on guiding and supporting 1.6MM advertisers to meet their advertising needs of creating and managing ad campaigns. At this scale, the complexity of diverse advertiser goals, campaign types, and market dynamics creates both a massive technical challenge and a transformative opportunity: even small improvements in guidance systems can have outsized impact on advertiser success and Amazon’s retail ecosystem. Our vision is to build a highly personalized, context-aware agentic advertiser guidance system that leverages LLMs together with tools such as auction simulations, ML models, and optimization algorithms. This agentic framework, will operate across both chat and non-chat experiences in the ad console, scaling to natural language queries as well as proactively delivering guidance based on deep understanding of the advertiser. To execute this vision, we collaborate closely with stakeholders across Ad Console, Sales, and Marketing to identify opportunities—from high-level product guidance down to granular keyword recommendations—and deliver them through a tailored, personalized experience. Our work is grounded in state-of-the-art agent architectures, tool integration, reasoning frameworks, and model customization approaches (including tuning, MCP, and preference optimization), ensuring our systems are both scalable and adaptive.