A quick guide to Amazon’s 40-plus papers at Interspeech 2022

Speech recognition and text-to-speech predominate, but other topics include audio watermarking, automatic dubbing, and compression.

Of Amazon’s more than 40 papers at this year’s Interspeech, automatic speech recognition and text-to-speech account for about half. But the others cover a range of topics, from acoustic watermarking and automatic dubbing to quantization and fairness.

Acoustic watermarking

Practical over-the-air perceptual acoustic watermarking
Ameya Agaskar

Audio classification

CNN-based audio event recognition for automated violence classification and rating for Prime Video content
Tarun Gupta, Mayank Sharma, Kenny Qiu, Xiang Hao, Raffay Hamid

Impact of acoustic event tagging on scene classification in a multi-task learning framework
Rahil Parikh, Harshavardhan Sundar, Ming Sun, Chao Wang, Spyros Matsoukas

Automatic dubbing

Isochrony-aware neural machine translation for automatic dubbing
Derek Tam, Surafel Melaku Lakew, Yogesh Virkar, Prashant Mathur, Marcello Federico

Prosodic alignment for off-screen automatic dubbing
Yogesh Virkar, Marcello Federico, Robert Enyedi, Roberto Barra-Chicote

Automatic speech recognition

Compute cost amortized transformer for streaming ASR
Yi Xie, Jonathan Macoskey, Martin Radfar, Feng-Ju Chang, Brian King, Ariya Rastrow, Athanasios Mouchtaris, Grant Strimel

Cost amortized Transformer.png
"Compute cost amortized Transformer for streaming ASR" proposes a mechanism that toggles components of Transformer blocks on and off to use computational resources more efficiently.

Content-context factorized representations for automated speech recognition
David M. Chan, Shalini Ghosh

ConvRNN-T: Convolutional augmented recurrent neural network transducers for streaming speech recognition
Martin Radfar, Rohit Barnwal, Rupak Vignesh Swaminathan, Feng-Ju Chang, Grant Strimel, Nathan Susanj, Athanasios Mouchtaris

Directed speech separation for automatic speech recognition of long-form conversational speech
Rohit Paturi, Sundararajan Srinivasan, Katrin Kirchhoff, Daniel Garcia-Romero

Domain prompts: Towards memory and compute efficient domain adaptation of ASR systems
Saket Dingliwa, Ashish Shenoy, Sravan Bodapati, Ankur Gandhe, Ravi Teja Gadde, Katrin Kirchhoff

Incremental learning for RNN-Transducer based speech recognition models
Deepak Baby, Pasquale D'Alterio, Valentin Mendelev

Knowledge distillation via module replacing for automatic speech recognition with recurrent neural network transducer
Kaiqi Zhao, Hieu Duy Nguyen, Animesh Jain, Nathan Susanj, Athanasios Mouchtaris, Lokesh Gupta, Ming Zhao

Learning to rank with BERT-based confidence models in ASR rescoring
Ting-Wei Wu, I-FAN CHEN, Ankur Gandhe

Reducing geographic disparities in automatic speech recognition via elastic weight consolidation
Viet Anh Trinh, Pegah Ghahremani, Brian King, Jasha Droppo, Andreas Stolcke, Roland Maas

RefTextLAS: Reference text biased listen, attend, and spell model for accurate reading evaluation
Phani Sankar Nidadavolu, Na Xu, Nick Jutila, Ravi Teja Gadde, Aswarth Abhilash Dara, Joseph Savold, Sapan Patel, Aaron Hoff, Veerdhawal Pande, Kevin Crews, Ankur Gandhe, Ariya Rastrow, Roland Maas

RNN-T lattice enhancement by grafting of pruned paths
Mirek Novak, Pavlos Papadopoulos

Using data augmentation and consistency regularization to improve semi-supervised speech recognition
Ashtosh Sapru

Dialogue

Contextual acoustic barge in classification for spoken dialog systems
Dhanush Bekal, Sundararajan Srinivasan, Sravan Bodapati, Srikanth Ronanki, Katrin Kirchhoff

Adversarial reweighting.png
The method presented in "Adversarial reweighting for speaker verification fairness" uses an adversarial network to identify underperforming groups in a speaker verification dataset (green) and adjusts their contribution to the training loss (bottom).

Fairness

Toward fairness in speech recognition: Discovery and mitigation of performance disparities
Pranav Dheram, Murugesan Ramakrishnan, Anirudh Raju, I-Fan Chen, Brian King, Katherine Powell, Melissa Saboowala, Karan Shetty, Andreas Stolcke

Keyword spotting

Latency control for keyword spotting
Christin Jose, Joe Wang, Grant Strimel, Mohammad Omar Khursheed, Yuriy Mishchenko, Brian Kulis

Language identification

A multimodal strategy for singing language identification
Wo Jae Lee, Emanuele Coviello

Multidevice processing

Challenges and opportunities in multi-device speech processing
Gregory Ciccarelli, Jarred Barber, Arun Nair, Israel Cohen, Tao Zhang

Multiparty speech

Separator-transducer-segmenter: Streaming recognition and segmentation of multi-party speech
Ilya Sklyar, Anna Piunova, Christian Osendorfer

Natural-language understanding

Phonetic embedding for ASR robustness in entity resolution
Xiaozhou Zhou, Ruying Bao, William M. Campbell

Quantization

Squashed weight distribution for low bit quantization of deep models
Nikko Ström, Haidar Khan, Wael Hamza

Sub-8-bit quantization aware training for 8-bit neural network accelerator with on device speech recognition
Kai Zhen, Hieu Duy Nguyen, Raviteja Chinta, Nathan Susanj, Athanasios Mouchtaris, Tariq Afzal, Ariya Rastrow

Sub-8-bit quantization.png
The training behavior of the algorithm proposed in "Sub-8-bit quantization aware training for 8-bit neural network accelerator with on device speech recognition", in which weights are optimized to lower quantization loss.

Signal processing

Clock skew robust acoustic echo cancellation
Karim Helwani, Erfan Soltanmohammadi, Michael M. Goodwin, Arvindh Krishnaswamy

Real-time packet loss concealment with mixed generative and predictive model
Jean-Marc Valin, Ahmed Mustafa, Christopher Montgomery, Timothy B. Terriberry, Michael Klingbeil, Paris Smaragdis, Arvindh Krishnaswamy

Speaker identification/verification

Adversarial reweighting for speaker verification fairness
Minho Jin, Chelsea J.-T. Ju, Zeya Chen, Yi Chieh Liu, Jasha Droppo, Andreas Stolcke

Graph-based multi-view fusion and local adaptation: Mitigating within household confusability for speaker identification
Long Chen, Yixiong Meng, Venkatesh Ravichandran, Andreas Stolcke

Graph fusion and fairness.png
The method proposed in "Graph-based multi-view fusion and local adaptation" propagates labels across a graph whose nodes represent utterances and whose weighted edges quantify the similarity between utterances.

Spoken-language understanding

Learning under label noise for robust spoken language understanding systems
Anoop Kumar, Pankaj Sharma, Aravind Illa, Sriram Venkatapathy, Subhrangshu Nandi, Pritam Varma, Anurag Dwarakanath, Aram Galstyan

On joint training with interfaces for spoken language understanding
Anirudh Raju, Milind Rao, Gautam Tiwari, Pranav Dheram, Bryan Anderson, Zhe Zhang, Chul Lee, Bach Bui, Ariya Rastrow

Text-to-speech

Automatic evaluation of speaker similarity
Kamil Deja, Ariadna Sanchez, Julian Roth, Marius Cotescu

CopyCat2: A single model for multi-speaker TTS and many-to-many fine-grained prosody transfer
Sri Karlapati, Penny Karanasou, Mateusz Lajszczak, Ammar Abbas, Alexis Moinet, Peter Makarov, Ray Li, Arent van Korlaar, Simon Slangen, Thomas Drugman

Creating new voices.png
Voices created through the method presented in "Creating new voices using normalizing flows" (green) are spread across the embedding space of voices from the training set (blue), confirming that the method can generate a variety of new voices.

Creating new voices using normalizing flows
Piotr Biliński, Tom Merritt, Abdelhamid Ezzerg, Kamil Pokora, Sebastian Cygert, Kayoko Yanagisawa, Roberto Barra-Chicote, Daniel Korzekwa

Cross-lingual style transfer with conditional prior VAE and style loss
Dino Ratcliffe, You Wang, Alex Mansbridge, Penny Karanasou, Alexis Moinet, Marius Cotescu

End-to-end LPCNet: A neural vocoder with fully-differentiable LPC estimation
Krishna Subramani, Jean-Marc Valin, Umut Isik, Paris Smaragdis, Arvindh Krishnaswamy

Expressive, variable, and controllable duration modelling in TTS
Ammar Abbas, Tom Merritt, Alexis Moinet, Sri Karlapati, Ewa Muszynska, Simon Slangen, Elia Gatti, Thomas Drugman

GlowVC: Mel-spectrogram space disentangling model for language-independent text-free voice conversion
Magdalena Proszewska, Grzegorz Beringer, Daniel Saez Trigueros, Tom Merritt, Abdelhamid Ezzerg, Roberto Barra-Chicote

L2-GEN: A neural phoneme paraphrasing approach to L2 speech synthesis for mispronunciation diagnosis
Daniel Zhang, Ashwinkumar Ganesan, Sarah Campbell, Daniel Korzekwa

Low data? No problem: low resource, language-agnostic conversational text-to-speech via F0- conditioned data augmentation
Giulia Comini, Goeric Huybrechts, Manuel Sam Ribeiro, Adam Gabrys, Jaime Lorenzo Trueba

Mix and match: An empirical study on training corpus composition for polyglot text-to-speech (TTS)
Ziyao Zhang, Alessio Falai, Ariadna Sanchez, Orazio Angelini, Kayoko Yanagisawa

Simple and effective multi-sentence TTS with expressive and coherent prosody
Peter Makarov, Ammar Abbas, Mateusz Lajszczak, Arnaud Joly, Sri Karlapati, Alexis Moinet, Thomas Drugman, Penny Karanasou

Unify and conquer: How phonetic feature representation affects polyglot text-to-speech (TTS)
Ariadna Sanchez, Alessio Falai, Ziyao Zhang, Orazio Angelini, Kayoko Yanagisawa

Research areas

Related content

US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation - Design and implement methods for use of dexterous end effectors with force and tactile sensing - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Applied Science Manager, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
IL, Haifa
Come join the AWS Agentic AI science team in building the next generation models for intelligent automation. AWS, the world-leading provider of cloud services, has fostered the creation and growth of countless new businesses, and is a positive force for good. Our customers bring problems that will give Applied Scientists like you endless opportunities to see your research have a positive and immediate impact in the world. You will have the opportunity to partner with technology and business teams to solve real-world problems, have access to virtually endless data and computational resources, and to world-class engineers and developers that can help bring your ideas into the world. As part of the team, we expect that you will develop innovative solutions to hard problems, and publish your findings at peer reviewed conferences and workshops. We are looking for world class researchers with experience in one or more of the following areas - autonomous agents, API orchestration, Planning, large multimodal models (especially vision-language models), reinforcement learning (RL) and sequential decision making.
AT, Graz
Are you a MS or PhD student interested in a 2026 internship in the field of machine learning, deep learning, generative AI, large language models and speech technology, robotics, computer vision, optimization, operations research, quantum computing, automated reasoning, or formal methods? If so, we want to hear from you! We are looking for students interested in using a variety of domain expertise to invent, design and implement state-of-the-art solutions for never-before-solved problems. You can find more information about the Amazon Science community as well as our interview process via the links below; https://www.amazon.science/ https://amazon.jobs/content/en/career-programs/university/science https://amazon.jobs/content/en/how-we-hire/university-roles/applied-science Key job responsibilities As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to write technical white papers, create roadmaps and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists and other science interns to develop solutions and deploy them into production. You will have the opportunity to design new algorithms, models, or other technical solutions whilst experiencing Amazon’s customer focused culture. The ideal intern must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems. A day in the life At Amazon, you will grow into the high impact person you know you’re ready to be. Every day will be filled with developing new skills and achieving personal growth. How often can you say that your work changes the world? At Amazon, you’ll say it often. Join us and define tomorrow. Some more benefits of an Amazon Science internship include; • All of our internships offer a competitive stipend/salary • Interns are paired with an experienced manager and mentor(s) • Interns receive invitations to different events such as intern program initiatives or site events • Interns can build their professional and personal network with other Amazon Scientists • Interns can potentially publish work at top tier conferences each year About the team Applicants will be reviewed on a rolling basis and are assigned to teams aligned with their research interests and experience prior to interviews. Start dates are available throughout the year and durations can vary in length from 3-6 months for full time internships. This role may available across multiple locations in the EMEA region (Austria, Estonia, France, Germany, Ireland, Israel, Italy, Jordan, Luxembourg, Netherlands, Poland, Romania, Spain, South Africa, UAE, and UK). Please note these are not remote internships.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IL, Haifa
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. About the Role We are looking for an experienced Data Scientist to support our central analytics and finance disciplines at Twitch. Bringing to bear a mixture of data analysis, dashboarding, and SQL query skills, you will use data-driven methods to answer business questions, and deliver insights that deepen understanding of our viewer behavior and monetization performance. Reporting to the VP of Finance, Analytics, and Business Operations, your team will be located in San Francisco. Our team is based in San Francisco, CA. You Will - Create actionable insights from data related to Twitch viewers, creators, advertising revenue, commerce revenue, and content deals. - Develop dashboards and visualizations to communicate points of view that inform business decision-making. - Create and maintain complex queries and data pipelines for ad-hoc analyses. - Author narratives and documentation that support conclusions. - Collaborate effectively with business partners, product managers, and data team members to align data science efforts with strategic goals. Perks * Medical, Dental, Vision & Disability Insurance * 401(k) * Maternity & Parental Leave * Flexible PTO * Amazon Employee Discount
IL, Tel Aviv
Are you a scientist interested in pushing the state of the art in Information Retrieval, Large Language Models and Recommendation Systems? Are you interested in innovating on behalf of millions of customers, helping them accomplish their every day goals? Do you wish you had access to large datasets and tremendous computational resources? Do you want to join a team of capable scientist and engineers, building the future of e-commerce? Answer yes to any of these questions, and you will be a great fit for our team at Amazon. Our team is part of Amazon’s Personalization organization, a high-performing group that leverages Amazon’s expertise in machine learning, generative AI, large-scale data systems, and user experience design to deliver the best shopping experiences for our customers. Our team builds large-scale machine-learning solutions that delight customers with personalized and up-to-date recommendations that are related to their interests. We are a team uniquely placed within Amazon, to have a direct window of opportunity to influence how customers will think about their shopping journey in the future. As an Applied Scientist in our team, you will be responsible for the research, design, and development of new AI technologies for personalization. You will adopt or invent new machine learning and analytical techniques in the realm of recommendations, information retrieval and large language models. You will collaborate with scientists, engineers, and product partners locally and abroad. Your work will include inventing, experimenting with, and launching new features, products and systems. Please visit https://www.amazon.science for more information.
IN, HR, Gurugram
Lead ML teams building large-scale forecasting and optimization systems that power Amazon’s global transportation network and directly impact customer experience and cost. As an Sr Applied Scientist, you will set scientific direction, mentor applied scientists, and partner with engineering and product leaders to deliver production-grade ML solutions at massive scale. Key job responsibilities 1. Lead and grow a high-performing team of Applied Scientists, providing technical guidance, mentorship, and career development. 2. Define and own the scientific vision and roadmap for ML solutions powering large-scale transportation planning and execution. 3. Guide model and system design across a range of techniques, including tree-based models, deep learning (LSTMs, transformers), LLMs, and reinforcement learning. 4. Ensure models are production-ready, scalable, and robust through close partnership with stakeholders. Partner with Product, Operations, and Engineering leaders to enable proactive decision-making and corrective actions. 5. Own end-to-end business metrics, directly influencing customer experience, cost optimization, and network reliability. 6. Help contribute to the broader ML community through publications, conference submissions, and internal knowledge sharing. A day in the life Your day includes reviewing model performance and business metrics, guiding technical design and experimentation, mentoring scientists, and driving roadmap execution. You’ll balance near-term delivery with long-term innovation while ensuring solutions are robust, interpretable, and scalable. Ultimately, your work helps improve delivery reliability, reduce costs, and enhance the customer experience at massive scale.
US, WA, Seattle
Amazon Prime is looking for an ambitious Economist to help create econometric insights for world-wide Prime. Prime is Amazon's premiere membership program, with over 200M members world-wide. This role is at the center of many major company decisions that impact Amazon's customers. These decisions span a variety of industries, each reflecting the diversity of Prime benefits. These range from fast-free e-commerce shipping, digital content (e.g., exclusive streaming video, music, gaming, photos), reading, healthcare, and grocery offerings. Prime Science creates insights that power these decisions. As an economist in this role, you will create statistical tools that embed causal interpretations. You will utilize massive data, state-of-the-art scientific computing, econometrics (causal, counterfactual/structural, experimentation), and machine-learning, to do so. Some of the science you create will be publishable in internal or external scientific journals and conferences. You will work closely with a team of economists, applied scientists, data professionals (business analysts, business intelligence engineers), product managers, and software/data engineers. You will create insights from descriptive statistics, as well as from novel statistical and econometric models. You will create internal-to-Amazon-facing automated scientific data products to power company decisions. You will write strategic documents explaining how senior company leaders should utilize these insights to create sustainable value for customers. These leaders will often include the senior-most leaders at Amazon. The team is unique in its exposure to company-wide strategies as well as senior leadership. It operates at the research frontier of utilizing data, econometrics, artificial intelligence, and machine-learning to form business strategies. A successful candidate will have demonstrated a capacity for building, estimating, and defending statistical models (e.g., causal, counterfactual, machine-learning) using software such as R, Python, or STATA. They will have a willingness to learn and apply a broad set of statistical and computational techniques to supplement deep training in one area of econometrics. For example, many applications on the team motivate the use of structural econometrics and machine-learning. They rely on building scalable production software, which involves a broad set of world-class software-building skills often learned on-the-job. As a consequence, already-obtained knowledge of SQL, machine learning, and large-scale scientific computing using distributed computing infrastructures such as Spark-Scala or PySpark would be a plus. Additionally, this candidate will show a track-record of delivering projects well and on-time, preferably in collaboration with other team members (e.g. co-authors). Candidates must have very strong writing and emotional intelligence skills (for collaborative teamwork, often with colleagues in different functional roles), a growth mindset, and a capacity for dealing with a high-level of ambiguity. Endowed with these traits and on-the-job-growth, the role will provide the opportunity to have a large strategic, world-wide impact on the customer experiences of Prime members.