A quick guide to Amazon’s 40-plus papers at Interspeech 2022

Speech recognition and text-to-speech predominate, but other topics include audio watermarking, automatic dubbing, and compression.

Of Amazon’s more than 40 papers at this year’s Interspeech, automatic speech recognition and text-to-speech account for about half. But the others cover a range of topics, from acoustic watermarking and automatic dubbing to quantization and fairness.

Acoustic watermarking

Practical over-the-air perceptual acoustic watermarking
Ameya Agaskar

Audio classification

CNN-based audio event recognition for automated violence classification and rating for Prime Video content
Tarun Gupta, Mayank Sharma, Kenny Qiu, Xiang Hao, Raffay Hamid

Impact of acoustic event tagging on scene classification in a multi-task learning framework
Rahil Parikh, Harshavardhan Sundar, Ming Sun, Chao Wang, Spyros Matsoukas

Automatic dubbing

Isochrony-aware neural machine translation for automatic dubbing
Derek Tam, Surafel Melaku Lakew, Yogesh Virkar, Prashant Mathur, Marcello Federico

Prosodic alignment for off-screen automatic dubbing
Yogesh Virkar, Marcello Federico, Robert Enyedi, Roberto Barra-Chicote

Automatic speech recognition

Compute cost amortized transformer for streaming ASR
Yi Xie, Jonathan Macoskey, Martin Radfar, Feng-Ju Chang, Brian King, Ariya Rastrow, Athanasios Mouchtaris, Grant Strimel

Cost amortized Transformer.png
"Compute cost amortized Transformer for streaming ASR" proposes a mechanism that toggles components of Transformer blocks on and off to use computational resources more efficiently.

Content-context factorized representations for automated speech recognition
David M. Chan, Shalini Ghosh

ConvRNN-T: Convolutional augmented recurrent neural network transducers for streaming speech recognition
Martin Radfar, Rohit Barnwal, Rupak Vignesh Swaminathan, Feng-Ju Chang, Grant Strimel, Nathan Susanj, Athanasios Mouchtaris

Directed speech separation for automatic speech recognition of long-form conversational speech
Rohit Paturi, Sundararajan Srinivasan, Katrin Kirchhoff, Daniel Garcia-Romero

Domain prompts: Towards memory and compute efficient domain adaptation of ASR systems
Saket Dingliwa, Ashish Shenoy, Sravan Bodapati, Ankur Gandhe, Ravi Teja Gadde, Katrin Kirchhoff

Incremental learning for RNN-Transducer based speech recognition models
Deepak Baby, Pasquale D'Alterio, Valentin Mendelev

Knowledge distillation via module replacing for automatic speech recognition with recurrent neural network transducer
Kaiqi Zhao, Hieu Duy Nguyen, Animesh Jain, Nathan Susanj, Athanasios Mouchtaris, Lokesh Gupta, Ming Zhao

Learning to rank with BERT-based confidence models in ASR rescoring
Ting-Wei Wu, I-FAN CHEN, Ankur Gandhe

Reducing geographic disparities in automatic speech recognition via elastic weight consolidation
Viet Anh Trinh, Pegah Ghahremani, Brian King, Jasha Droppo, Andreas Stolcke, Roland Maas

RefTextLAS: Reference text biased listen, attend, and spell model for accurate reading evaluation
Phani Sankar Nidadavolu, Na Xu, Nick Jutila, Ravi Teja Gadde, Aswarth Abhilash Dara, Joseph Savold, Sapan Patel, Aaron Hoff, Veerdhawal Pande, Kevin Crews, Ankur Gandhe, Ariya Rastrow, Roland Maas

RNN-T lattice enhancement by grafting of pruned paths
Mirek Novak, Pavlos Papadopoulos

Using data augmentation and consistency regularization to improve semi-supervised speech recognition
Ashtosh Sapru

Dialogue

Contextual acoustic barge in classification for spoken dialog systems
Dhanush Bekal, Sundararajan Srinivasan, Sravan Bodapati, Srikanth Ronanki, Katrin Kirchhoff

Adversarial reweighting.png
The method presented in "Adversarial reweighting for speaker verification fairness" uses an adversarial network to identify underperforming groups in a speaker verification dataset (green) and adjusts their contribution to the training loss (bottom).

Fairness

Toward fairness in speech recognition: Discovery and mitigation of performance disparities
Pranav Dheram, Murugesan Ramakrishnan, Anirudh Raju, I-Fan Chen, Brian King, Katherine Powell, Melissa Saboowala, Karan Shetty, Andreas Stolcke

Keyword spotting

Latency control for keyword spotting
Christin Jose, Joe Wang, Grant Strimel, Mohammad Omar Khursheed, Yuriy Mishchenko, Brian Kulis

Language identification

A multimodal strategy for singing language identification
Wo Jae Lee, Emanuele Coviello

Multidevice processing

Challenges and opportunities in multi-device speech processing
Gregory Ciccarelli, Jarred Barber, Arun Nair, Israel Cohen, Tao Zhang

Multiparty speech

Separator-transducer-segmenter: Streaming recognition and segmentation of multi-party speech
Ilya Sklyar, Anna Piunova, Christian Osendorfer

Natural-language understanding

Phonetic embedding for ASR robustness in entity resolution
Xiaozhou Zhou, Ruying Bao, William M. Campbell

Quantization

Squashed weight distribution for low bit quantization of deep models
Nikko Ström, Haidar Khan, Wael Hamza

Sub-8-bit quantization aware training for 8-bit neural network accelerator with on device speech recognition
Kai Zhen, Hieu Duy Nguyen, Raviteja Chinta, Nathan Susanj, Athanasios Mouchtaris, Tariq Afzal, Ariya Rastrow

Sub-8-bit quantization.png
The training behavior of the algorithm proposed in "Sub-8-bit quantization aware training for 8-bit neural network accelerator with on device speech recognition", in which weights are optimized to lower quantization loss.

Signal processing

Clock skew robust acoustic echo cancellation
Karim Helwani, Erfan Soltanmohammadi, Michael M. Goodwin, Arvindh Krishnaswamy

Real-time packet loss concealment with mixed generative and predictive model
Jean-Marc Valin, Ahmed Mustafa, Christopher Montgomery, Timothy B. Terriberry, Michael Klingbeil, Paris Smaragdis, Arvindh Krishnaswamy

Speaker identification/verification

Adversarial reweighting for speaker verification fairness
Minho Jin, Chelsea J.-T. Ju, Zeya Chen, Yi Chieh Liu, Jasha Droppo, Andreas Stolcke

Graph-based multi-view fusion and local adaptation: Mitigating within household confusability for speaker identification
Long Chen, Yixiong Meng, Venkatesh Ravichandran, Andreas Stolcke

Graph fusion and fairness.png
The method proposed in "Graph-based multi-view fusion and local adaptation" propagates labels across a graph whose nodes represent utterances and whose weighted edges quantify the similarity between utterances.

Spoken-language understanding

Learning under label noise for robust spoken language understanding systems
Anoop Kumar, Pankaj Sharma, Aravind Illa, Sriram Venkatapathy, Subhrangshu Nandi, Pritam Varma, Anurag Dwarakanath, Aram Galstyan

On joint training with interfaces for spoken language understanding
Anirudh Raju, Milind Rao, Gautam Tiwari, Pranav Dheram, Bryan Anderson, Zhe Zhang, Chul Lee, Bach Bui, Ariya Rastrow

Text-to-speech

Automatic evaluation of speaker similarity
Kamil Deja, Ariadna Sanchez, Julian Roth, Marius Cotescu

CopyCat2: A single model for multi-speaker TTS and many-to-many fine-grained prosody transfer
Sri Karlapati, Penny Karanasou, Mateusz Lajszczak, Ammar Abbas, Alexis Moinet, Peter Makarov, Ray Li, Arent van Korlaar, Simon Slangen, Thomas Drugman

Creating new voices.png
Voices created through the method presented in "Creating new voices using normalizing flows" (green) are spread across the embedding space of voices from the training set (blue), confirming that the method can generate a variety of new voices.

Creating new voices using normalizing flows
Piotr Biliński, Tom Merritt, Abdelhamid Ezzerg, Kamil Pokora, Sebastian Cygert, Kayoko Yanagisawa, Roberto Barra-Chicote, Daniel Korzekwa

Cross-lingual style transfer with conditional prior VAE and style loss
Dino Ratcliffe, You Wang, Alex Mansbridge, Penny Karanasou, Alexis Moinet, Marius Cotescu

End-to-end LPCNet: A neural vocoder with fully-differentiable LPC estimation
Krishna Subramani, Jean-Marc Valin, Umut Isik, Paris Smaragdis, Arvindh Krishnaswamy

Expressive, variable, and controllable duration modelling in TTS
Ammar Abbas, Tom Merritt, Alexis Moinet, Sri Karlapati, Ewa Muszynska, Simon Slangen, Elia Gatti, Thomas Drugman

GlowVC: Mel-spectrogram space disentangling model for language-independent text-free voice conversion
Magdalena Proszewska, Grzegorz Beringer, Daniel Saez Trigueros, Tom Merritt, Abdelhamid Ezzerg, Roberto Barra-Chicote

L2-GEN: A neural phoneme paraphrasing approach to L2 speech synthesis for mispronunciation diagnosis
Daniel Zhang, Ashwinkumar Ganesan, Sarah Campbell, Daniel Korzekwa

Low data? No problem: low resource, language-agnostic conversational text-to-speech via F0- conditioned data augmentation
Giulia Comini, Goeric Huybrechts, Manuel Sam Ribeiro, Adam Gabrys, Jaime Lorenzo Trueba

Mix and match: An empirical study on training corpus composition for polyglot text-to-speech (TTS)
Ziyao Zhang, Alessio Falai, Ariadna Sanchez, Orazio Angelini, Kayoko Yanagisawa

Simple and effective multi-sentence TTS with expressive and coherent prosody
Peter Makarov, Ammar Abbas, Mateusz Lajszczak, Arnaud Joly, Sri Karlapati, Alexis Moinet, Thomas Drugman, Penny Karanasou

Unify and conquer: How phonetic feature representation affects polyglot text-to-speech (TTS)
Ariadna Sanchez, Alessio Falai, Ziyao Zhang, Orazio Angelini, Kayoko Yanagisawa

Research areas

Related content

US, NY, New York
The Sponsored Products and Brands (SPB) team at Amazon Ads is re-imagining the advertising landscape through state-of-the-art generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond! Key job responsibilities This role will be pivotal in redesigning how ads contribute to a personalized, relevant, and inspirational shopping experience, with the customer value proposition at the forefront. Key responsibilities include, but are not limited to: - Contribute to the design and development of GenAI, deep learning, multi-objective optimization and/or reinforcement learning empowered solutions to transform ad retrieval, auctions, whole-page relevance, and/or bespoke shopping experiences. - Collaborate cross-functionally with other scientists, engineers, and product managers to bring scalable, production-ready science solutions to life. - Stay abreast of industry trends in GenAI, LLMs, and related disciplines, bringing fresh and innovative concepts, ideas, and prototypes to the organization. - Contribute to the enhancement of team’s scientific and technical rigor by identifying and implementing best-in-class algorithms, methodologies, and infrastructure that enable rapid experimentation and scaling. - Mentor and grow junior scientists and engineers, cultivating a high-performing, collaborative, and intellectually curious team. A day in the life As an Applied Scientist on the Sponsored Products and Brands Off-Search team, you will contribute to the development in Generative AI (GenAI) and Large Language Models (LLMs) to revolutionize our advertising flow, backend optimization, and frontend shopping experiences. This is a rare opportunity to redefine how ads are retrieved, allocated, and/or experienced—elevating them into personalized, contextually aware, and inspiring components of the customer journey. You will have the opportunity to fundamentally transform areas such as ad retrieval, ad allocation, whole-page relevance, and differentiated recommendations through the lens of GenAI. By building novel generative models grounded in both Amazon’s rich data and the world’s collective knowledge, your work will shape how customers engage with ads, discover products, and make purchasing decisions. If you are passionate about applying frontier AI to real-world problems with massive scale and impact, this is your opportunity to define the next chapter of advertising science. About the team The Off-Search team within Sponsored Products and Brands (SPB) is focused on building delightful ad experiences across various surfaces beyond Search on Amazon—such as product detail pages, the homepage, and store-in-store pages—to drive monetization. Our vision is to deliver highly personalized, context-aware advertising that adapts to individual shopper preferences, scales across diverse page types, remains relevant to seasonal and event-driven moments, and integrates seamlessly with organic recommendations such as new arrivals, basket-building content, and fast-delivery options. To execute this vision, we work in close partnership with Amazon Stores stakeholders to lead the expansion and growth of advertising across Amazon-owned and -operated pages beyond Search. We operate full stack—from backend ads-retail edge services, ads retrieval, and ad auctions to shopper-facing experiences—all designed to deliver meaningful value. Curious about our advertising solutions? Discover more about Sponsored Products and Sponsored Brands to see how we’re helping businesses grow on Amazon.com and beyond!
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLE Employer: AMAZON.COM SERVICES LLC Offered Position: Data Scientist III Job Location: Seattle, Washington Job Number: AMZ9674365 Position Responsibilities: Own the data science elements of various products to help with data-based decision making, product performance optimization, and product performance tracking. Work directly with product managers to help drive the design of the product. Work with Technical Product Managers to help drive the build planning. Translate business problems and products into data requirements and metrics. Initiate the design, development, and implementation of scientific analysis projects or deliverables. Own the analysis, modelling, system design, and development of data science solutions for products. Write documents and make presentations that explain model/analysis results to the business. Bridge the degree of uncertainty in both problem definition and data scientific solution approaches. Build consensus on data, metrics, and analysis to drive business and system strategy. Position Requirements: Master's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science or a related field and two years of experience in the job offered or a related occupation. Employer will accept a Bachelor's degree or foreign equivalent degree in Statistics, Applied Mathematics, Economics, Engineering, Computer Science, or a related field and five years of progressive post-baccalaureate experience in the job offered or a related occupation as equivalent to the Master's degree and two years of experience. Must have one year of experience in the following skills: (1) building statistical models and machine learning models using large datasets from multiple resources; (2) building complex data analyses by leveraging scripting languages including Python, Java, or related scripting language; and (3) communicating with users, technical teams, and management to collect requirements, evaluate alternatives, and develop processes and tools to support the organization. Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation. 40 hours / week, 8:00am-5:00pm, Salary Range $162,752/year to $215,300/year. Amazon is a total compensation company. Dependent on the position offered, equity, sign-on payments, and other forms of compensation may be provided as part of a total compensation package, in addition to a full range of medical, financial, and/or other benefits. For more information, visit: https://www.aboutamazon.com/workplace/employee-benefits.#0000
US, WA, Seattle
Innovators wanted! Are you an entrepreneur? A builder? A dreamer? This role is part of an Amazon Special Projects team that takes the company’s Think Big leadership principle to the extreme. We focus on creating entirely new products and services with a goal of positively impacting the lives of our customers. No industries or subject areas are out of bounds. If you’re interested in innovating at scale to address big challenges in the world, this is the team for you. Here at Amazon, we embrace our differences. We are committed to furthering our culture of inclusion. We have thirteen employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We are constantly learning through programs that are local, regional, and global. Amazon’s culture of inclusion is reinforced within our 16 Leadership Principles, which remind team members to seek diverse perspectives, learn and be curious, and earn trust. Our team highly values work-life balance, mentorship and career growth. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We care about your career growth and strive to assign projects and offer training that will challenge you to become your best.
US, CA, Sunnyvale
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like Echo, Fire Tablets, Fire TV, and other consumer devices. We are looking for exceptional scientists to join our Applied Science team to help build industry-leading technology with multimodal language models for various edge applications. This role is for a Sr. Applied Scientist to lead science efforts for on-device inference pipelines and orchestration, working closely with cross-functional product and engineering teams to invent, design, develop, and validate new AI features for our devices. Key job responsibilities * Lead cross-functional efforts to invent, design, develop, and validate new AI features for our devices * Invent, build, and evaluate model inference and orchestrations to enable new customer experiences * Drive partnerships with product and engineering teams to implement algorithms and models in production * Train and optimize state-of-the-art multimodal models for resource-efficient deployment * Work closely with compiler engineers, hardware architects, data collection, and product teams A day in the life As an Applied Scientist with the Silicon and Solutions Group Edge AI team, you'll contribute to science solution design, conduct experiments, explore new algorithms, develop embedded inference pipelines, and discover ways to enrich our customer experiences. You'll have opportunities to collaborate across teams of engineers and scientists to bring algorithms and models to production. About the team Our Devices team specializes in inventing new-to-world, category creating products using advanced machine learning technologies. This role is on a new cross-functional team, whose cadence and structure resembles an efficient and fast-paced startup, with rapid growth and development opportunities.
US, WA, Seattle
About Sponsored Products and Brands: The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About Our Team: The Sponsored Brands Impressions-based Offerings team is responsible for evolving the value proposition of Sponsored Brands to drive brand advertising in retail media at scale, helping brands get discovered, acquire new customers and sustainably grow customer lifetime value. We build end-to-end solutions that enable brands to drive discovery, visibility and share of voice. This includes building advertiser controls, shopper experiences, monetization strategies and optimization features. We succeed when (1) shoppers discover, engage and build affinity with brands and (2) brands can grow their business at scale with our advertising products. About This Role: As an Applied Scientist on our team, you will: * Develop AI solutions for Sponsored Brands advertiser and shopper experiences. Build monetization and optimization systems that leverage generative models to value and improve campaign performance. * Define a long-term science vision and roadmap for our Sponsored Brands advertising business, driven from our customers' needs, translating that direction into specific plans for applied scientists and engineering teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. * Design and conduct A/B experiments to evaluate proposed solutions based on in-depth data analyses. * Effectively communicate technical and non-technical ideas with teammates and stakeholders; * Stay up-to-date with advancements and the latest modeling techniques in the field. * Think big about the arc of development of Gen AI over a multi-year horizon and identify new opportunities to apply these technologies to solve real-world problems. #GenAI
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Collaborate with simulation and robotics experts to translate physical modeling needs into robust, scalable, and maintainable simulation solutions. - Design and implement high-performance simulation modeling and tools for rigid and deformable body simulation. - Identify and optimize performance bottlenecks in simulation pipelines to support real-time and batch simulation workflows. - Help build validation and unit testing pipelines to ensure correctness and physical fidelity of simulation results. - Identify potential sources of sim-to-real gaps and propose modeling and numerical approximations to reduce them. - Stay current with the latest advances in numerical methods, parallel computing, and GPU architectures, and incorporate them into our tools.
IN, KA, Bengaluru
Amazon Devices is an inventive research and development company that designs and engineer high-profile devices like the Kindle family of products, Fire Tablets, Fire TV, Health Wellness, Amazon Echo & Astro products. This is an exciting opportunity to join Amazon in developing state-of-the-art techniques that bring Gen AI on edge for our consumer products. We are looking for exceptional scientists to join our Applied Science team and help develop the next generation of edge models, and optimize them while doing co-designed with custom ML HW based on a revolutionary architecture. Work hard. Have Fun. Make History. Key job responsibilities Quantize, prune, distill, finetune Gen AI models to optimize for edge platforms Fundamentally understand Amazon’s underlying Neural Edge Engine to invent optimization techniques Analyze deep learning workloads and provide guidance to map them to Amazon’s Neural Edge Engine Use first principles of Information Theory, Scientific Computing, Deep Learning Theory, Non Equilibrium Thermodynamics Train custom Gen AI models that beat SOTA and paves path for developing production models Collaborate closely with compiler engineers, fellow Applied Scientists, Hardware Architects and product teams to build the best ML-centric solutions for our devices Publish in open source and present on Amazon's behalf at key ML conferences - NeurIPS, ICLR, MLSys.
IN, KA, Bengaluru
You will be working with a unique and gifted team developing exciting products for consumers. The team is a multidisciplinary group of engineers and scientists engaged in a fast paced mission to deliver new products. The team faces a challenging task of balancing cost, schedule, and performance requirements. You should be comfortable collaborating in a fast-paced and often uncertain environment, and contributing to innovative solutions, while demonstrating leadership, technical competence, and meticulousness. Your deliverables will include development of thermal solutions, concept design, feature development, product architecture and system validation through to manufacturing release. You will support creative developments through application of analysis and testing of complex electronic assemblies using advanced simulation and experimentation tools and techniques. Key job responsibilities In this role, you will: - Lead end-to-end thermal design for SoC and consumer electronics, spanning package, board, system architecture, and product integration - Perform advanced CFD simulations using tools such as Star-CCM+ or FloEFD to assess feasibility, risks, and mitigation strategies - Plan and execute thermal validation for devices and SoC packages, ensuring compliance with safety, reliability, and qualification requirements - Partner with cross-functional and cross-site teams to influence product decisions, define thermal limits, and establish temperature thresholds - Develop data processing, statistical analysis, and test automation frameworks to improve insight quality, scalability, and engineering efficiency - Communicate thermal risks, trade-offs, and mitigation strategies clearly to engineering leadership to support schedule, performance, and product decisions About the team Amazon Lab126 is an inventive research and development company that designs and engineers high-profile consumer electronics. Lab126 began in 2004 as a subsidiary of Amazon.com, Inc., originally creating the best-selling Kindle family of products. Since then, we have produced innovative devices like Fire tablets, Fire TV and Amazon Echo. What will you help us create?
CA, BC, Vancouver
Success in any organization begins with its people and having a comprehensive understanding of our workforce and how we best utilize their unique skills and experience is paramount to our future success. WISE (Workforce Intelligence powered by Scientific Engineering) delivers the scientific and engineering foundation that powers Amazon's enterprise-wide workforce planning ecosystem. Addressing the critical need for precise workforce planning, WISE enables a closed-loop mechanism essential for ensuring Amazon has the right workforce composition, organizational structure, and geographical footprint to support long-term business needs with a sustainable cost structure. We are looking for a Sr. Applied Scientist to join our ML/AI team to work on Advanced Optimization and LLM solutions. You will partner with Software Engineers, Machine Learning Engineers, Data Engineers and other Scientists, TPMs, Product Managers and Senior Management to help create world-class solutions. We're looking for people who are passionate about innovating on behalf of customers, demonstrate a high degree of product ownership, and want to have fun while they make history. You will leverage your knowledge in machine learning, advanced analytics, metrics, reporting, and analytic tooling/languages to analyze and translate the data into meaningful insights. You will have end-to-end ownership of operational and technical aspects of the insights you are building for the business, and will play an integral role in strategic decision-making. Further, you will build solutions leveraging advanced analytics that enable stakeholders to manage the business and make effective decisions, partner with internal teams to identify process and system improvement opportunities. As a tech expert, you will be an advocate for compelling user experiences and will demonstrate the value of automation and data-driven planning tools in the People Experience and Technology space. Key job responsibilities * Engineering execution - drive crisp and timely execution of milestones, consider and advise on key design and technology trade-offs with engineering teams * Priority management - manage diverse requests and dependencies from teams * Process improvements – define, implement and continuously improve delivery and operational efficiency * Stakeholder management – interface with and influence your stakeholders, balancing business needs vs. technical constraints and driving clarity in ambiguous situations * Operational Excellence – monitor metrics and program health, anticipate and clear blockers, manage escalations To be successful on this journey, you love having high standards for yourself and everyone you work with, and always look for opportunities to make our services better.
RO, Bucharest
Amazon's Compliance and Safety Services (CoSS) Team is looking for a smart and creative Applied Scientist to apply and extend state-of-the-art research in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model to join the Applied Science team. At Amazon, we are working to be the most customer-centric company on earth. Millions of customers trust us to ensure a safe shopping experience. This is an exciting and challenging position to drive research that will shape new ML solutions for product compliance and safety around the globe in order to achieve best-in-class, company-wide standards around product assurance. You will research on large amounts of tabular, textual, and product image data from product detail pages, selling partner details and customer feedback, evaluate state-of-the-art algorithms and frameworks, and develop new algorithms to improve safety and compliance mechanisms. You will partner with engineers, technical program managers and product managers to design new ML solutions implemented across the entire Amazon product catalog. Key job responsibilities As an Applied Scientist on our team, you will: - Research and Evaluate state-of-the-art algorithms in NLP, multi-modal modeling, domain adaptation, continuous learning and large language model. - Design new algorithms that improve on the state-of-the-art to drive business impact, such as synthetic data generation, active learning, grounding LLMs for business use cases - Design and plan collection of new labels and audit mechanisms to develop better approaches that will further improve product assurance and customer trust. - Analyze and convey results to stakeholders and contribute to the research and product roadmap. - Collaborate with other scientists, engineers, product managers, and business teams to creatively solve problems, measure and estimate risks, and constructively critique peer research - Consult with engineering teams to design data and modeling pipelines which successfully interface with new and existing software - Publish research publications at internal and external venues. About the team The science team delivers custom state-of-the-art algorithms for image and document understanding. The team specializes in developing machine learning solutions to advance compliance capabilities. Their research contributions span multiple domains including multi-modal modeling, unstructured data matching, text extraction from visual documents, and anomaly detection, with findings regularly published in academic venues.