Using hyperboloids to improve product retrieval

Method using hyperboloid embeddings improves on methods that use vector embeddings by up to 33%.

Many machine learning models depend on the concept of embedding, or mapping data to a representational space, where it can be manipulated or measured in useful ways. Usually, a data embedding is a point in the space — a vector.

In recent years, researchers at Amazon and elsewhere have been investigating the idea of hyperbolic embedding, or embedding data, not as points in space, but as higher-dimensional analogues of rectangles on a curved surface. This has numerous advantages, one of which is the ability to capture hierarchical relationships between data points.

At this year’s International Conference on Web Search and Data Mining (WSDM), we and our colleagues are presenting a paper on the use of hyperbolic embeddings for product retrieval. Because product catalogues are often organized hierarchically, with individual products belonging to a succession of more and more general categories (e.g., tablet/computer/electronics), hyperbolic embeddings are suited particularly well to this task.

In our approach, we represent a query — say, “Fire TV” — as a rectangle in hyperbolic space, known as a hyperboloid. Query matches are those products whose vector embeddings lie within the hyperboloid’s boundaries.

Hyperboloid animation.gif
A new product retrieval method embeds queries as hyperboloids, or higher-dimensional analogues of rectangles on a curved surface. Each hyperboloid is represented by two vectors: a centroid vector, which defines the hyperboloid's center, and a limit vector. The embedding of a multi-term query is the intersection (red polygon) of the embeddings of its component terms.

In experiments, we compared this approach to nine different methods that use vector embeddings and one method that embeds data as rectangular boxes in Euclidean space — essentially, non-curved versions of hyperboloids.

We used two different datasets and five different measures of retrieval accuracy and found that our approach was the best performer across the board. In some cases, the improvements were dramatic — as much as 33% relative to the best vector embedding method and 27% relative to the Euclidean box embedding.

Related content
Novel embedding scheme enables a 7% to 33% improvement over its best-performing predecessors in handling graph queries.

Our approach also aids in model interpretability, as we use an attention mechanism to determine which elements of a query string are most relevant to which attributes of a product. The attention values for a given query provide an easy way to visualize the model’s rationale for selecting a certain product.

For instance, one experiment showed that when the query included the phrase “daily moisturizer”, the model attended to the word “moisturizer” when selecting products that had the word “lotion” in their titles.

Hyperbolic embeddings

An advantage of both Euclidean box embeddings and hyperbolic embeddings is that they can expand and contract according to the generality of a query. With either approach, for instance, the embedding corresponding to the query “Fire” — which would also encompass Fire tablets and Fire cubes — would be larger than the embedding corresponding to the query “Fire TV”.

Related content
New "Mad Libs" technique for replacing words in individual sentences is grounded in metric differential privacy.

By the same token, both approaches offer an efficient way to combine queries. For instance, the embedding of the query “Fire TV stick with Alexa” would be the intersection of the embeddings corresponding to “Fire TV stick” and “Alexa”, while the embedding of the query “Fire or Kindle” would be the union of the embeddings for “Fire” and “Kindle”.

Where hyperbolic space has an advantage over Euclidean space is in representing hierarchies. Hyperbolic space is intrinsically curved, which means it gives you the representational capacity of curvature for free.

For instance, a hierarchical tree can be mapped onto a ball such that the root of the tree is at the center of the ball, its leaf nodes are on the surface, and the other layers of the tree fall at regular distances in-between. In Euclidean space, representing that ball requires three dimensions, but in hyperbolic space, it requires only two. This dimensionality reduction enables hyperboloids to model hierarchical relationships efficiently, even when the hierarchical trees are enormous.

Related content
Amazon Scholar Chandan Reddy on the trends he sees in knowledge discovery research and their implications for his own work.

In our paper, we define hyperboloids using two vectors: one vector indicates the center (centroid) of the hyperboloid, and the other indicates the distance from the centroid to the hyperboloid’s edge. This compact representation further increases the efficiency of computing in hyperbolic space.

The model

Our machine learning model takes as inputs both a product query and the titles of candidate products. All the input texts are then broken into overlapping three-character chunks, or trigrams.

An encoder maps the trigrams, for both query and products, to hyperbolic space. The query mappings are hyperboloids, while the product mappings are hyperbolic vectors. An intersection layer then produces a new set of hyperboloids by finding the intersection of every pair of trigram embeddings from the query.

Both the query trigrams and their intersections then pass to an attention layer, which, during training, learns which query elements are most relevant to which product titles. The embedding of each product title also passes to a self-attention layer, which learns which title elements tend to be most pertinent to product retrieval queries.

ANTHEM architecture.png
The ANTHEM architecture.

From the attention values, the model computes a new set of vectors, representing the centroids of new query embedding hyperboloids and new embeddings of product titles, all biased toward the features the attention model identifies as most important. The intersection of hyperboloids and product vectors determines which products are presented to the customer, in what order.

Note that we don’t train the model directly on representations of data hierarchies. To the extent that it is using hierarchical relationships, it simply learns them from training data.

ANTHEM attention grids.png
The weights computed by the attention mechanism provide a way to visualize the rationales for the product retrieval model’s decisions. In these figures, the y-axis represents trigrams of the query, and the x-axis represents trigrams of the product title. Sometimes, the mechanism finds lexical matches, such as “leatherer” with “leatherer” in the first grid. But often, the matches are semantic, such as “lotion” with “moisturizer” or “driver” with “clubs”.

In our experiments, we measured the performance of our model and ten baselines using five metrics. Three of the metrics were variations of normalized discounted cumulative gain (NDCG), which considers not only how many relevant results are contained in the top N but how highly they rank. We measured NDCG for the top three results (NDCG@3), the top five (NDCG@5), and the top 10 (NDCG@10). We also used mean average precision, which measures the fraction of relevant results, and mean reciprocal rank, which assigns relevant results fixed scores depending on where in the list they fall.

ANTHEM results.png
ANTHEM's experimental results.

As can be seen, on all five measures, on both a public dataset and a private dataset, our model — which we call ANTHEM, for AtteNTive Hyperbolic Entity Model — yielded the best results. On the private dataset, the gains over the best-performing vector embedding model (BERT) were consistently around 30%. On the public dataset, they were consistently around 9%.

Relative to the model that used Euclidean box embeddings (E-ANTHEM), the greatest gains came on NDCG@10 — 21% on the private dataset, 8% on the public. This is likely because of the hierarchical information that ANTHEM captures. That is, Euclidean embeddings may do a good job of finding the top matches, but ANTHEM does a better job of exploring the hierarchical product categories those matches belong to.

Related content

US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, San Francisco
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Member of Technical Staff with a strong deep learning background, to build industry-leading Generative Artificial Intelligence (GenAI) technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As a Member of Technical Staff with the AGI team, you will lead the development of algorithms and modeling techniques, to advance the state of the art with LLMs. You will lead the foundational model development in an applied research role, including model training, dataset design, and pre- and post-training optimization. Your work will directly impact our customers in the form of products and services that make use of GenAI technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in LLMs. About the team The AGI team has a mission to push the envelope in GenAI with LLMs and multimodal systems, in order to provide the best-possible experience for our customers.
US, CA, Sunnyvale
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Sr. Applied Scientists with Recommender System or Search Ranking or Ads Ranking experience to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Recommendation/Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Recommendation/Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, WA, Seattle
Amazon's Price Perception and Evaluation team is seeking a driven Principal Applied Scientist to harness planet scale multi-modal datasets, and navigate a continuously evolving competitor landscape, in order to build and scale an advanced self-learning scientific price estimation and product understanding system, regularly generating fresh customer-relevant prices on billions of Amazon and Third Party Seller products worldwide. We are looking for a talented, organized, and customer-focused technical leader with a charter to derive deep neural product relationships, quantify substitution and complementarity effects, and publish trust-preserving probabilistic price ranges on all products listed on Amazon. This role requires an individual with excellent scientific modeling and system design skills, bar-raising business acumen, and an entrepreneurial spirit. We are looking for an experienced leader who is a self-starter comfortable with ambiguity, demonstrates strong attention to detail, and has the ability to work in a fast-paced and ever-changing environment. Key job responsibilities - Develop the team. Mentor a highly talented group of applied machine learning scientists & researchers. - See the big picture. Shape long term vision for Amazon's science-based competitive, perception-preserving pricing techniques - Build strong collaborations. Partner with product, engineering, and science teams within Pricing & Promotions to deploy machine learning price estimation and error correction solutions at Amazon scale - Stay informed. Establish mechanisms to stay up to date on latest scientific advancements in machine learning, neural networks, natural language processing, probabilistic forecasting, and multi-objective optimization techniques. Identify opportunities to apply them to relevant Pricing & Promotions business problems - Keep innovating for our customers. Foster an environment that promotes rapid experimentation, continuous learning, and incremental value delivery. - Deliver Impact. Develop, Deploy, and Scale Amazon's next generation foundational price estimation and understanding system
US, WA, Seattle
Here at Amazon, we embrace our differences. We are committed to furthering our culture of diversity and inclusion of our teams within the organization. How do you get items to customers quickly, cost-effectively, and—most importantly—safely, in less than an hour? And how do you do it in a way that can scale? Our teams of hundreds of scientists, engineers, aerospace professionals, and futurists have been working hard to do just that! We are delivering to customers, and are excited for what’s to come. Check out more information about Prime Air on the About Amazon blog (https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos). If you are seeking an iterative environment where you can drive innovation, apply state-of-the-art technologies to solve real world delivery challenges, and provide benefits to customers, Prime Air is the place for you. Come work on the Amazon Prime Air Team! We are seeking a highly skilled Navigation Scientist to help develop advanced algorithms and software for our Prime Air delivery drone program. In this role, you will conduct comprehensive navigation analysis to support cross-functional decision-making, define system architecture and requirements, contribute to the development of flight algorithms, and actively identify innovative technological opportunities that will drive significant enhancements to meet our customers' evolving demands. Export Control License: This position may require a deemed export control license for compliance with applicable laws and regulations. Placement is contingent on Amazon’s ability to apply for and obtain an export control license on your behalf.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalized, and effective experience. As an Applied Scientist II on the Alexa Sensitive Content Intelligence (ASCI) team, you'll be part of an elite group developing industry-leading technologies in attribute extraction and sensitive content detection that work seamlessly across all languages and countries. In this role, you'll join a team of exceptional scientists pushing the boundaries of Natural Language Processing. Working in our dynamic, fast-paced environment, you'll develop novel algorithms and modeling techniques that advance the state of the art in NLP. Your innovations will directly shape how millions of customers interact with Amazon Echo, Echo Dot, Echo Show, and Fire TV devices every day. What makes this role exciting is the unique blend of scientific innovation and real-world impact. You'll be at the intersection of theoretical research and practical application, working alongside talented engineers and product managers to transform breakthrough ideas into customer-facing experiences. Your work will be crucial in ensuring Alexa remains at the forefront of AI technology while maintaining the highest standards of trust and safety. We're looking for a passionate innovator who combines strong technical expertise with creative problem-solving skills. Your deep understanding of NLP models (including LSTM and transformer-based architectures) will be essential in tackling complex challenges and identifying novel solutions. You'll leverage your exceptional technical knowledge, strong Computer Science fundamentals, and experience with large-scale distributed systems to create reliable, scalable, and high-performance products that delight our customers. Key job responsibilities In this dynamic role, you'll design and implement GenAI solutions that define the future of AI interaction. You'll pioneer novel algorithms, conduct ground breaking experiments, and optimize user experiences through innovative approaches to sensitive content detection and mitigation. Working alongside exceptional engineers and scientists, you'll transform theoretical breakthroughs into practical, scalable solutions that strengthen user trust in Alexa globally. You'll also have the opportunity to mentor rising talent, contributing to Amazon's culture of scientific excellence while helping build high-performing teams that deliver swift, impactful results. A day in the life Imagine starting your day collaborating with brilliant minds on advancing state-of-the-art NLP algorithms, then moving on to analyze experiment results that could reshape how Alexa understands and responds to users. You'll partner with cross-functional teams - from engineers to product managers - to ensure data quality, refine policies, and enhance model performance. Your expertise will guide technical discussions, shape roadmaps, and influence key platform features that require cross-team leadership. About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.