KDD: Graph neural networks and self-supervised learning

Amazon Scholar Chandan Reddy on the trends he sees in knowledge discovery research and their implications for his own work.

As a Senior Program Committee member at this year’s Knowledge Discovery and Data Mining Conference (KDD), with a wide perspective on paper submissions, Chandan Reddy noticed two major research trends: work on graph neural networks and on self-supervised learning.

Chandan Reddy.png
Chandan Reddy, an Amazon Scholar and professor of computer science at Virginia Tech.

Graph neural networks has been an extremely hot topic of research in recent years, and at this year’s KDD conference as well,” says Reddy, an Amazon Scholar and a professor of computer science at Virginia Tech. “In machine learning, you often assume that the different data samples are independent of each other. But in the real world, you always have more information about relationships between two entities. If you have two people, there are connections between them. Knowing about your neighbor, we can start to predict something about you. So naturally you have a lot of data that is being collected that can be represented in the form of graphs.”

In the context of knowledge discovery, the nodes of the graph usually represent entities, and the edges usually represent relationships between them. Graph neural networks provide a way to represent nodes as vectors in a multidimensional space, such that nodes’ locations in the space encode information about their relationships to each other. Graph neural networks can, for instance, help identify missing edges in a graph — that is, previously unnoticed relationships between entities.

With self-supervised learning, a machine learning model is trained, using unlabeled data, on a proxy task that is related to its target task but not identical to it. Then it’s fine tuned on labeled data. If the proxy task is well chosen, this can dramatically reduce the need for labeled data.

Amazon at KDD

Read more about Amazon's involvement at KDD — papers, program committee membership, and participation in workshops and tutorials.

Self-supervised learning “was introduced in natural-language processing about three years back through this BERT model and some other masked language-modeling approaches,” Reddy explains. “It has now become kind of a mainstream topic in the data-mining community.”

BERT is a language model, meaning that it encodes the probabilities of different sequences of words in a particular language. It’s trained on unlabeled texts in which individual words have been randomly masked out, and its proxy task is to fill in the missing words.

“In graph neural networks, the analogy is that you remove an edge and you try to predict whether there was an edge or not,” Reddy explains. “Based on that, you can then use that information to learn the dependencies between the nodes.”

Application-specific representations

But, Reddy explains, while the same basic BERT model has proved useful for a wide range of problems in natural-language processing (NLP), the ideal vector representation of a node in a knowledge network is very much dependent on the ultimate application. In part, this is because knowledge networks can have heterogeneous data types. A graph depicting online shoppers’ buying preferences, for example, could have nodes representing classes of products, nodes representing specific products, and nodes representing product features, such as battery capacity or fabric type.

In machine learning, you often assume that the different data samples are independent of each other. But in the real world, you always have more information about relationships between two entities.
Chandan Reddy

“When you have a link prediction model, where you want to predict whether a link can be formed between these two nodes, you don't want to learn a single representation for a particular node,” Reddy explains. “If a person has to be recommended a book, the representation has to be different from the same person being recommended movie. You would want a book representation that is different when it is being recommended to a group of people who are interested in this genre of books or if it's being recommended to a person who's interested in a different genre of books. In some sense you have to have a multiaspect or a multiview representation of this node.”

In his own research, Reddy frequently works on knowledge discovery for health care, where the problem of data heterogeneity is particularly acute.

“Some of these lab values, for example, you are monitoring over time,” he explains. “The patient is admitted to an ICU, and blood pressure, blood work is done on a regular basis every 12 hours. So you have a time series data, which is sequential in nature. You have demographic data, which is static in nature. And then you have clinical notes, which are again sequential, but they’re not temporal, whereas in time series it is temporal. And you have image data in the form of x-rays and CT scans.”

“Now we have to come up with a deep-learning model that can leverage all these different forms of data. Health care is just one application, but you can think of so many other applications where leveraging such multimodal data is becoming an important problem. In real-world data, you don't just see data in one particular form. You have multiple heterogeneous forms of data that are collected about any particular entity.”

Learning efficiently

Self-supervised learning is, fundamentally, a technique for doing machine learning more efficiently: labeling data is inefficient, and leveraging unlabeled data reduces dependence on labeled data. In addition to serving as a Senior Program Committee member at KDD, Reddy is also one of the organizers of the conference’s Workshop on Data-Efficient Machine Learning, together with Amazon’s Nikhil Rao and Sumeet Khatariya.

“People talk a lot about domain adaptation in the presence of limited data,” Reddy says. “There are different topics related to it like few-shot or zero-shot learning, transfer learning, meta-learning, multitask learning, et cetera. Some people talk about out-of-domain distribution. There are several concepts that try to achieve data-efficient learning in real-world applications. We wanted to have all these discussions in a more coherent manner in this workshop, so we can share knowledge, we can see what works, what doesn't. We tried to bring people from different communities so that they can learn both success and failure stories of different approaches in various domains.

“Some of these graph papers that were published last year are basically inspired by a simple technique that was borrowed from the NLP and computer vision communities. We are trying to see if we can share more recent trends and knowledge from these domains.”

Related content

US, WA, Seattle
Amazon internships are full-time (40 hours/week) for 12 consecutive weeks with start dates in May - July 2023. Our internship program provides hands-on learning and building experiences for students who are interested in a career in hardware engineering. This role will be based in Seattle, and candidates must be willing to work in-person.Corporate Projects (CPT) is a team that sits within the broader Corporate Development organization at Amazon. We seek to bring net-new, strategic projects to life by working together with customers and evolving projects from ZERO-to-ONE. To do so, we deploy our resources towards proofs-of-concept (POCs) and pilot programs and develop them from high-level ideas (the ZERO) to tangible short-term results that provide validating signal and a path to scale (the ONE). We work with our customers to develop and create net-new opportunities by relentlessly scouring all of Amazon and finding new and innovative ways to strengthen and/or accelerate the Amazon Flywheel.CPT seeks an Applied Science intern to work with a diverse, cross-functional team to build new, innovative customer experiences. Within CPT, you will apply both traditional and novel scientific approaches to solve and scale problems and solutions. We are a team where science meets application. A successful candidate will be a self-starter comfortable with ambiguity, strong attention to detail, and the ability to work in a fast-paced, ever-changing environment. As an Applied Science Intern, you will own the design and development of end-to-end systems. You’ll have the opportunity to create technical roadmaps, and drive production level projects that will support Amazon Science. You will work closely with Amazon scientists, and other science interns to develop solutions and deploy them into production. The ideal scientist must have the ability to work with diverse groups of people and cross-functional teams to solve complex business problems.
US, WA, Seattle
Note that this posting is for a handful of teams within Amazon Robotics. Teams include: Robotics, Computer Vision, Machine Learning, Optimization, and more.Are you excited about building high-performance robotic systems that can perceive and learn to help deliver for customers? The Amazon Robotics team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.Amazon Robotics is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. We will give you the tools and support you need to invent with us in ways that are rewarding, fulfilling and fun. Come join us!A day in the lifeAs an intern you will develop a new algorithm to solve one of the challenging computer vision and manipulation problems in Amazon's robotic warehouses. Your project will fit your academic research experience and interests. You will code and test out your solutions in increasingly realistic scenarios and iterate on the idea with your mentor to find the best solution to the problem.
US, WA, Bellevue
The Global Supply Chain-ACES organization aims to raise the bar on Amazon’s customer experience by delivering holistic solutions for Global Customer Fulfillment that facilitate the effective and efficient movement of product through our supply chain. We develop strategies, processes, material handling and technology solutions, reporting and other mechanisms, which are simple, technology enabled, globally scalable, and locally relevant. We achieve this through cross-functional partnerships, listening to the needs of our customers and prioritizing initiatives to deliver maximum impact across the value chain. Within the organization, our Quality team balances tactical operation with operations partners with global engagement on programs to deliver improved inventory accuracy in our network. The organization is looking for an experienced Principal Data Scientist to partner with senior leadership to develop long term strategic solutions. As a Principal Scientist, they will lead critical initiatives for Global Supply Chain, leveraging complex data analysis and visualization to:a. Collaborate with business teams to define data requirements and processes;b. Automate data pipelines;c. Design, develop, and maintain scalable (automated) reports and dashboards that track progress towards plans;d. Define, track and report program success metrics.e. Serve as a technical science lead on our most demanding, cross-functional projects.
US, WA, Seattle
Are you excited about building high-performance robotic systems that can perceive, learn, and act intelligently alongside humans? The Robotics AI team is creating new science products and technologies that make this possible, at Amazon scale. We work at the intersection of computer vision, machine learning, robotic manipulation, navigation, and human-robot interaction.The Amazon Robotics team is seeking broad, curious applied scientists and engineering interns to join our diverse, full-stack team. In addition to designing, building, and delivering end-to-end robotic systems, our team is responsible for core infrastructure and tools that serve as the backbone of our robotic applications, enabling roboticists, applied scientists, software and hardware engineers to collaborate and deploy systems in the lab and in the field. Come join us!
US, WA, Bellevue
Employer: Amazon.com Services LLCPosition: Research Scientist IILocation: Bellevue, WA Multiple Positions Available1. Research, build and implement highly effective and innovative methods in Statistical Modeling, Machine Learning, and other quantitative techniques such as operational research and optimization to deliver algorithms that solve real business problems.2. Take initiative to scope and plan research projects based on roadmap of business owners and enable data-driven solutions. Participate in shaping roadmap for the research team.3. Ensure data quality throughout all stages of acquisition and processing of the data, including such areas as data sourcing/collection, ground truth generation, data analysis, experiment, evaluation and visualization etc.4. Navigate a variety of data sources, understand the business reality behind large-scale data and develop meaningful science solutions.5. Partner closely with product or/and program owners, as well as scientists and engineers in cross-functional teams with a clear path to business impact and deliver on demanding projects.6. Present proposals and results in a clear manner backed by data and coupled with conclusions to business customers and leadership team with various levels of technical knowledge, educating them about underlying systems, as well as sharing insights.7. Perform experiments to validate the feature additions as requested by domain expert teams.8. Some telecommuting benefits available.The pay range for this position in Bellevue, WA is $136,000-$184,000 (yr); however, base pay offered may vary depending on job-related knowledge, skills, and experience. A sign-on bonus and restricted stock units may be provided as part of the compensation package, in addition to a full range of medical, financial, and/or other benefits, dependent on the position offered. This information is provided by the Washington Equal Pay Act. Base pay information is based on market location. Applicants should apply via Amazon's internal or external careers site.#0000
US, VA, Arlington
The Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. As Director for PXT Central Science Technology, you will be responsible for leading multiple teams through rapidly evolving complex demands and define, develop, deliver and execute on our science roadmap and vision. You will provide thought leadership to scientists and engineers to invent and implement scalable machine learning recommendations and data driven algorithms supporting flexible UI frameworks. You will manage and be responsible for delivering some of our most strategic technical initiatives. You will design, develop and operate new, highly scalable software systems that support Amazon’s efforts to be Earth’s Best Employer and have a significant impact on Amazon’s commitment to our employees and communities where we both serve and employ 1.3 million Amazonians. As Director of Applied Science, you will be part of the larger technical leadership community at Amazon. This community forms the backbone of the company, plays a critical role in the broad business planning, works closely with senior executives to develop business targets and resource requirements, influences our long-term technical and business strategy, helps hire and develop engineering leaders and developers, and ultimately enables us to deliver engineering innovations.This role is posted for Arlington, VA, but we are flexible on location at many of our offices in the US and Canada.
US, VA, Arlington
Employer: Amazon.com Services LLCPosition: Data Scientist IILocation: Arlington, VAMultiple Positions Available1. Manage and execute entire projects or components of large projects from start to finish including data gathering and manipulation, synthesis and modeling, problem solving, and communication of insights and recommendations.2. Oversee the development and implementation of data integration and analytic strategies to support population health initiatives.3. Leverage big data to explore and introduce areas of analytics and technologies.4. Analyze data to identify opportunities to impact populations.5. Perform advanced integrated comprehensive reporting, consultative, and analytical expertise to provide healthcare cost and utilization data and translate findings into actionable information for internal and external stakeholders.6. Oversee the collection of data, ensuring timelines are met, data is accurate and within established format.7. Act as a data and technical resource and escalation point for data issues, ensuring they are brought to resolution.8. Serve as the subject matter expert on health care benefits data modeling, system architecture, data governance, and business intelligence tools. #0000
US, TX, Dallas
Employer: Amazon.com Services LLCPosition: Data Scientist II (multiple positions available)Location: Dallas, TX Multiple Positions Available:1. Assist customers to deliver Machine Learning (ML) and Deep Learning (DL) projects from beginning to end, by aggregating data, exploring data, building and validating predictive models, and deploying completed models to deliver business impact to the organization;2. Apply understanding of the customer’s business need and guide them to a solution using AWS AI Services, AWS AI Platforms, AWS AI Frameworks, and AWS AI EC2 Instances;3. Use Deep Learning frameworks like MXNet, PyTorch, Caffe 2, Tensorflow, Theano, CNTK, and Keras to help our customers build DL models;4. Research, design, implement and evaluate novel computer vision algorithms and ML/DL algorithms;5. Work with data architects and engineers to analyze, extract, normalize, and label relevant data;6. Work with DevOps engineers to help customers operationalize models after they are built;7. Assist customers with identifying model drift and retraining models;8. Research and implement novel ML and DL approaches, including using FPGA;9. Develop computer vision and machine learning methods and algorithms to address real-world customer use-cases; and10. Design and run experiments, research new algorithms, and work closely with engineers to put algorithms and models into practice to help solve customers' most challenging problems.11. Approximately 15% domestic and international travel required.12. Telecommuting benefits are available.#0000
US, WA, Seattle
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Manager III, Data ScienceLocation: Bellevue, WashingtonPosition Responsibilities:Manage a team of data scientists working to build large-scale, technical solutions to increase effectiveness of Amazon Fulfillment systems. Define key business goals and map them to the success of technical solutions. Aggregate, analyze and model data from multiple sources to inform business decisions. Manage and quantify improvement in the customer experience resulting from research outcomes. Develop and manage a long-term research vision and portfolio of research initiatives, with algorithms and models that to be integrated in production systems. Hire and mentor junior scientists.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000
US, VA, Arlington
MULTIPLE POSITIONS AVAILABLECompany: AMAZON.COM SERVICES LLCPosition Title: Data Scientist IILocation: Arlington, VirginiaPosition Responsibilities:Design and implement scalable and reliable approaches to support or automate decision making throughout the business. Apply a range of data science techniques and tools combined with subject matter expertise to solve difficult business problems and cases in which the solution approach is unclear. Acquire data by building the necessary SQL / ETL queries. Import processes through various company specific interfaces for accessing Oracle, RedShift, and Spark storage systems. Build relationships with stakeholders and counterparts. Analyze data for trends and input validity by inspecting univariate distributions, exploring bivariate relationships, constructing appropriate transformations, and tracking down the source and meaning of anomalies. Build models using statistical modeling, mathematical modeling, econometric modeling, network modeling, social network modeling, natural language processing, machine learning algorithms, genetic algorithms, and neural networks. Validate models against alternative approaches, expected and observed outcome, and other business defined key performance indicators. Implement models that comply with evaluations of the computational demands, accuracy, and reliability of the relevant ETL processes at various stages of production.Amazon.com is an Equal Opportunity-Affirmative Action Employer – Minority / Female / Disability / Veteran / Gender Identity / Sexual Orientation #0000