Fitzgerald keynote.png
Amazon senior applied scientist Jack FitzGerald, delivering a keynote talk at the joint Language Intelligence @ Work and SEMANTiCS conference in Vienna, Austria.

Scaling multilingual virtual assistants to 1,000 languages

Self-supervised training, distributed training, and knowledge distillation have delivered remarkable results, but they’re just the tip of the iceberg.

Yesterday at the joint Language Intelligence @ Work and SEMANTiCS conference in Vienna, Austria, Amazon senior applied scientist Jack FitzGerald delivered a keynote talk on multilingual virtual assistants and the path toward a massively multilingual future. This is an edited version of his talk.

The evolution of human-computer interaction paradigms

In the past 50 years, computing technology has progressed from text-based terminal inputs, to graphical user interfaces, to predominantly web-based applications, through the mobile era, and finally into the era of a voice user interface and ambient computing.

Interface timeline.png
A brief history of computing interfaces.

Each of these paradigms has its own challenges with respect to multilingualism, whether it was the migration from ASCII to Unicode or proper character rendering on a website. However, I would argue that a voice AI system is the most difficult paradigm yet with respect to massive multilingualism.

The first reason is that the input space for voice interface commands is unbounded: the user can phrase each command in hundreds of different ways, all of which are valid. Another reason is that even within a single language, there can be many different dialects and accents.

Related content
Amazon Visiting Academic Barbara Poblete helps to build safer, more-diverse online communities — and to aid disaster response.

Most important, the coupling between language and culture is inescapable. Whether it’s the level of formality used, preferred activities, or religious differences, there isn’t a one-size-fits-all solution. Instead, we must adapt the virtual assistant to understand cultural context and say only things that are appropriate for a given locale.

Voice AI systems today

A typical voice AI system includes automatic-speech-recognition models, which convert raw audio into text; natural-language understanding models, which determine the user’s intent and recognize named entities; a central service for arbitration and dialogue management, which routes commands to the proper services or skills; and finally, a text-to-speech model, which issues the output. Additional tasks might include expansion of the underlying knowledge graph and semantic parsing, localization of touch screen content, or local information services.

Alexa overview.png
An overview of Alexa’s design.

Let’s look at some of the operational considerations for supporting multiple languages in such models. One is the training data: they must be topically exhaustive, meaning that they cover the full spectrum of possible user utterances, and they must be culturally exhaustive — for instance, covering all of the holidays a user might celebrate. They must also remain up-to-date, and it’s not always easy to add something new to the model without regression on existing functionalities.

A second consideration is in-house testing. Though in many cases one can get away with synthetic or otherwise artificial data for model training, for testing it’s important to have realistic utterances. Those typically need to come from humans, and collecting them can be a major expense. It’s also useful to perform live, interactive testing, which requires people who can speak and understand each language that the system supports.

Related content
New approach corrects for cases when average improvements are accompanied by specific regressions.

Finally, it’s important to have the ability to support users and process their feedback. In most cases, this again requires staff who understand each of the supported languages.

Ultimately, human-based processes are not very scalable if our goal is to support thousands of languages. Instead, we must turn to technology to the greatest extent possible.

Multilingual modeling today

One of the leading reasons for the current success of multilingual text models is self-supervision.

In traditional supervised learning, a model would be trained from scratch on the desired task. If we wanted a model that would classify the sentiment of a product review, for example, we would manually annotate a bunch of product reviews, and we would use that dataset to train the model.

Today, however, we make use of transfer learning, in which text models are pretrained on terabytes of text data that don’t require manual annotation. Instead, the training procedure leverages the structure inherent to the text itself.

Self-supervision signals.png
Self-supervised-training objectives.

We’ll call this self-supervised pretraining With the masked-language-modeling training objective, for instance, the model is fed the input “for [MASK] out loud!”, and it must predict that “[MASK]” should be filled with the word “crying”. Other objectives, such as causal language modeling, span filling, deshuffling, and denoising can also be used.

Because the datasets required for self-supervised pretraining are unlabeled and monolingual, we can leverage troves of data, such as Common Crawl web scrapes, every Wikipedia page in existence, thousands of books and news articles, and more. Couple these large datasets with highly parallelizable architectures such as transformers, which can be trained on over a thousand GPUs with near linear scaling, and we can build models with tens or hundreds of billions of dense parameters. Such has been the focus for many people in the field for the past few years, including the Alexa Teacher Model team.

One incredible consequence of the transfer learning paradigm is called zero-shot learning. In the context of multilingual modeling, it works like this: the modeler begins by pretraining the model on some set of languages, using self-supervision. As an example, suppose that the modeler trains a model on English, French, and Japanese using every Wikipedia article in those three languages.

Related content
New end-to-end approach to zero-shot video classification dramatically outperforms predecessors.

The next step is to adapt the model to a particular task using labeled data. Suppose that the modeler has a labeled dataset for intent classification, but only in English. The modeler can go ahead and fine-tune the model on the English data, then run it on the remaining languages.

Despite the fact that the model was never trained to do intent classification with French or Japanese data, it can still classify intents in those languages, by leveraging what it learned about those languages during pretraining. Given that the acquisition of labeled data is often a bottleneck, this property of language models is highly valuable for language expansion. Of course, zero-shot learning is just the extreme end of a continuum: transfer learning helps even out performance when the labeled data in different languages is imbalanced.

Zero-shot multilingual.png
Zero-shot learning for multilingual adaptation.

The next step up the data efficiency ladder is performing tasks without any additional training or fine tuning, using only a couple of labeled records or none at all. This is possible through “in-context learning,” which was popularized in the GPT-3 paper.

To perform in-context learning, simply take a pretrained model and feed it the appropriate prompts. Think of a prompt is a hint to the model about the task it should perform. Suppose that we want the model to summarize a passage. We might prefix the passage with the word “Passage” and a colon and follow it with the word “Summary” and a colon. The model would then generate a summary of the passage.

Related content
In the past few years, advances in artificial intelligence have captured our imaginations and led to the widespread use of voice services on our phones and in our homes.

This is the zero-shot in-context learning case, meaning that no fine-tuning is performed, and no labeled data are needed. To improve task performance, we can feed a few examples to the model before asking it to perform the task. Though this does require some labeled data, the amount is small, usually in the tens of examples only.

Our Alexa Teacher Model team recently trained and tested a 20-billion-parameter sequence-to-sequence model that was multilingual and showed nice performance for in-context learning. For example, we showed state-of-the-art performance on machine translation with in-context learning. The model can achieve competitive BLEU scores even for some low-resource languages, which is incredible given that no parallel data was used during pretraining, and no labeled data besides a single example was used at any step in the process.

We were particularly proud of the relatively small size of this model, which could compete with much larger models because it was trained on more data. (The Chinchilla model from OpenAI showed a similar result.) Though a large model trained on a smaller dataset and a smaller model trained on a larger dataset may use the same total compute at training time, the smaller model will require less compute and memory during inference, which is a key factor in real applications.

Given that models demonstrate multilingual understanding even without labeled data or parallel data, you may be wondering what’s happening inside of the model. Since the days of word2vec and earlier, we’ve represented characters, words, sentences, documents, and other inputs as vectors of floats, also known as embeddings, hidden states, and representations. Concepts cluster in certain areas of the representational space.

Related content
Training a product discovery system on many languages at once improves performance in all of them.

As humans, we can think only in three dimensions, whereas these representations are high-dimensional, but you can visualize this clustering in two or three dimensions as a reductive approximation. All the languages the model supports would cluster the concept of sitting in a chair in one region of the representational space; the concept of the ocean would inhabit a different cluster; and so forth.

Indeed, Pires et al. have shown that synonymous words across languages cluster together in the mBERT model. When examining 5,000 sentence pairs from the WMT16 dataset, they found that, given a sentence and its embedding in one language, the correct translation from another language is the closest embedding to the source embedding up to 75% of the time.

This manner of clustering can also be manipulated by changing the objective function. In their work on speech-to-text-modeling, Adams et al., from Johns Hopkins, were seeing undesirable clustering by language, rather than by phonemes, in the representational space. They were able to correct by adding training objectives around phoneme prediction and language identification.

The Alexa Teacher Model distillation pipeline

Once we have multilingual models, how do we adapt them to a real system? At the recent KDD conference, we presented a paper describing the Alexa Teacher Model pipeline, consisting of the following steps.

First, a multilingual model with billions of parameters is trained on up to a trillion tokens taken from Common Crawl web scrapes, Wikipedia articles, and more. Second, the models are further trained on in-domain, unlabeled data from a real system. Third, the model is distilled into smaller sizes that can be used in production. The final models can then be fine-tuned using labeled data and deployed.

ATM pipeline.png
The Alexa Teacher Model (AlexaTM) pipeline. The Alexa Teacher Model is trained on a large set of GPUs (left), then distilled into smaller variants (center), whose size depends on their uses. The end user adapts a distilled model to its particular use by fine-tuning it on in-domain data (right).

In tests, we found that our model was more accurate than a publicly available pretrained model fine-tuned on labeled data, and it significantly reduced customer dissatisfaction relative to a model trained by a smaller teacher model (85 million parameters, say, instead of billions). In short, we’ve verified that we can leverage the additional learning capacity of large, multilingual models for production systems requiring low latency and low memory consumption.

Scaling to 1,000 languages

I mentioned the fascinating ability of language models to learn joint representations of multiple languages without labeled or parallel data. This ability is crucial for us to scale to many languages. However, as we scale, we need test data that we can trust so that we can evaluate our progress.

Related content
MASSIVE dataset and Massively Multilingual NLU (MMNLU-22) competition and workshop will help researchers scale natural-language-understanding technology to every language on Earth.

Toward this end, my team at Amazon recently released a new benchmark for multilingual natural-language understanding called MASSIVE, which is composed of one million labeled records spanning 51 languages, 18 domains, 60 intents, and 55 slots. All of the data were created by native speakers of the languages. We also released a GitHub repository with code that can be used as a baseline for creating multilingual NLU models, as well as leaderboards on eval.ai.

Now, you may retort that 51 languages is still a long ways from 1,000 languages. This is true, but we purposefully chose our languages in order to maximize typological diversity while staying within our budget. Our languages span 29 language genera, 14 language families, and 21 distinct scripts or alphabets. The diversity of the chosen languages allows a modeler to test technology that should scale to many more languages within each represented genus, family, and script.

That said, we certainly have some major gaps in language coverage, including across native North and South American languages, African languages, and Australian languages. Yet we are optimistic that our fellow researchers across the field will continue to produce new labeled benchmark datasets for the world’s thousands of low-resource languages.

Massive languages.cropped.png
The 51 languages of MASSIVE, including scripts and genera.

Another difficulty with our current modeling approaches is that they rely on data sources such as web scrapes, encyclopedic articles, and news articles, which are highly skewed toward a small set of languages. Wang, Ruder, and Neubig recently presented some fascinating work leveraging bilingual lexicons — corpora consisting of word-level translations — to improve language model performance for low-resource languages. Lexicons cover a far greater portion of the world’s languages than our typical data sources for language modeling, making this an exciting approach.

Related content
Self-learning system uses customers’ rephrased requests as implicit error signals.

Researchers, missionaries, and businesspeople have been created fundamental linguistic resources for decades, from Bible translations to the Unimorph corpus. The Unimorph datasets are used for the SIGMORPHON shared task, in which a model must predict the correct formulation of word given that word’s root and certain morphological transformations, such as part of speech, tense, and person. We must find more ways to leverage such resources when creating massively multilingual voice AI systems.

As a final technique for scaling to many more languages, we can consider what we in Alexa call “self-learning.” Some of my Alexa colleagues published a paper showing that we can mine past utterances to improve overall system performance. For example, if a user rephrases a request as part of a multiturn interaction, as shown on the left in the figure below, or if different users provide variations for the same desired goal, as shown on the right, then we can make soft assumptions that the different formulations are synonymous.

All of these cases can be statistically aggregated to form new training sets to update the system, without the need to manually annotate utterances. In a multilingual system, such technology is particularly valuable after the initial launch of a language, both to improve performance generally and to adapt to changes in the lexicon.

Self-learning.png
Alexa’s self-learning mechanism.

The road ahead

I hope that you share my wonder at the current state of the art — the scale of language-model training, the magic of zero-shot learning, and the distillation of knowledge into compact models that can run in latency-sensitive systems. All of this is incredible, but we’ve only scratched the surface of supporting the world’s 7,000 languages.

To move into the next era of massive multilingualism, we must build new and increasingly powerful models that can take advantage of low-cost data, particularly unlabeled monolingual data. We must also build models that can leverage existing and upcoming linguistic resources, such as bilingual lexicons and morphological-transformation databases. And finally, we must expand available language resources across more languages and domains, including more unlabeled monolingual corpora, more parallel resources, and more realistic, labeled, task-specific datasets.

Increased multilingualism is a win for all people everywhere. Each language provides a unique perspective on the world in which we live. A rich plurality of perspectives leads to a deeper understanding of our fellow people and of all creation.

Keep building.

Research areas

Related content

IN, KA, Bengaluru
The Amazon Alexa AI team in India is seeking a talented, self-driven Applied Scientist to work on prototyping, optimizing, and deploying ML algorithms within the realm of Generative AI. Key responsibilities include: - Research, experiment and build Proof Of Concepts advancing the state of the art in AI & ML for GenAI. - Collaborate with cross-functional teams to architect and execute technically rigorous AI projects. - Thrive in dynamic environments, adapting quickly to evolving technical requirements and deadlines. - Engage in effective technical communication (written & spoken) with coordination across teams. - Conduct thorough documentation of algorithms, methodologies, and findings for transparency and reproducibility. - Publish research papers in internal and external venues of repute - Support on-call activities for critical issues Basic Qualifications: - Master’s or PhD in computer science, statistics or a related field - 1-2 years experience in deep learning, machine learning, and data science. - Proficiency in coding and software development, with a strong focus on machine learning frameworks. - Experience in Python, or another language; command line usage; familiarity with Linux and AWS ecosystems. - Understanding of relevant statistical measures such as confidence intervals, significance of error measurements, development and evaluation data sets, etc. - Excellent communication skills (written & spoken) and ability to collaborate effectively in a distributed, cross-functional team setting. - Papers published in AI/ML venues of repute Preferred Qualifications: - Track record of diving into data to discover hidden patterns and conducting error/deviation analysis - Ability to develop experimental and analytic plans for data modeling processes, use of strong baselines, ability to accurately determine cause and effect relations - The motivation to achieve results in a fast-paced environment. - Exceptional level of organization and strong attention to detail - Comfortable working in a fast paced, highly collaborative, dynamic work environment
US, CA, Pasadena
Do you enjoy solving challenging problems and driving innovations in research? As a Research Science intern with the Quantum Algorithms Team at CQC, you will work alongside global experts to develop novel quantum algorithms, evaluate prospective applications of fault-tolerant quantum computers, and strengthen the long-term value proposition of quantum computing. A strong candidate will have experience applying methods of mathematical and numerical analysis to assess the performance of quantum algorithms and establish their advantage over classical algorithms. Key job responsibilities We are particularly interested in candidates with expertise in any of the following subareas related to quantum algorithms: quantum chemistry, many-body physics, quantum machine learning, cryptography, optimization theory, quantum complexity theory, quantum error correction & fault tolerance, quantum sensing, and scientific computing, among others. A day in the life Throughout your journey, you'll have access to unparalleled resources, including state-of-the-art computing infrastructure, cutting-edge research papers, and mentorship from industry luminaries. This immersive experience will not only sharpen your technical skills but also cultivate your ability to think critically, communicate effectively, and thrive in a fast-paced, innovative environment where bold ideas are celebrated. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices. This is not a remote internship opportunity. About the team Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of theoretical and experimental physicists, materials scientists, and hardware and software engineers on a mission to develop a fault-tolerant quantum computer.
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing in Pasadena, CA, is looking to hire a Research Scientist specializing in hardware design for cryogenic environements. The candidate should have expertise in 3D CAD (SolidWorks), thermal and structural FEA (Ansys/COMSOL), hardware design for cryogenic applications, design for manufacturing, and mechanical engineering principles. The candidate must have demonstrated driving designs through full product development cycles (requirements, conceptual design, detailed design, manufacturing, integration, and testing). Candidates must have a strong background in both cryogenic mechanical engineering theory and implementation. Working effectively within a cross-functional team environment is critical. Key job responsibilities Our scientists and engineers collaborate across diverse teams and projects to offer state of the art, cost effective solutions for scaling the signal delivery to AWS quantum processor systems at cryogenic temperatures. Equally important is the ability to scale the thermal performance and improve EMI mitigation of the cryogenic environment. You'll bring passion, enthusiasm, and innovation to work on the following: - High density novel packaging solutions for quantum processor units. - Cryogenic mechanical design for novel cryogenic signal conditioning sub-assemblies. - Cryogenic mechanical design for signal delivery systems. - Simulation driven designs (shielding, filtering, etc.) to reduce sources of EMI within the qubit environment. - Own end-to-end product development through requirements, design reports, design reviews, assembly/testing documentation, and final delivery. A day in the life As you design and implement cryogenic hardware solutions, from requirements definition to deployment, you will also: - Participate in requirements, design, and test reviews and communicate with internal stakeholders. - Work cross-functionally to help drive decisions using your unique technical background and skill set. - Refine and define standards and processes for operational excellence. - Work in a high-paced, startup-like environment where you are provided the resources to innovate quickly. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Inclusive Team Culture AWS values curiosity and connection. Our employee-led and company-sponsored affinity groups promote inclusion and empower our people to take pride in what makes us unique. Our inclusion events foster stronger, more collaborative teams. Our continual innovation is fueled by the bold ideas, fresh perspectives, and passionate voices our teams bring to everything we do. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Export Control Requirement: Due to applicable export control laws and regulations, candidates must be either a U.S. citizen or national, U.S. permanent resident (i.e., current Green Card holder), or lawfully admitted into the U.S. as a refugee or granted asylum, or be able to obtain a US export license. If you are unsure if you meet these requirements, please apply and Amazon will review your application for eligibility.
US, CA, Santa Clara
Amazon Web Services (AWS) is assembling an elite team of world-class scientists and engineers to pioneer the next generation of AI-driven development tools. Join the Amazon Kiro LLM-Training team and help create groundbreaking generative AI technologies including Kiro IDE and Amazon Q Developer that are transforming the software development landscape. Key job responsibilities As a key member of our team, you'll be at the forefront of innovation, where cutting-edge research meets real-world application: - Push the boundaries of reinforcement learning and post-training methodologies for large language models specialized in code intelligence - Invent and implement state-of-the-art machine learning solutions that operate at unprecedented Amazon scale - Deploy revolutionary products that directly impact the daily workflows of millions of developers worldwide - Break new ground in AI and machine learning, challenging what's possible in intelligent code assistance - Publish and present your pioneering work at premier ML and NLP conferences (NeurIPS, ICML, ICLR , ACL, EMNLP) - Accelerate innovation by working directly with customers to rapidly transition research breakthroughs into production systems About the team The AWS Developer Agents and Experiences (DAE) team is reimagining the builder experience through generative AI and foundation models. We're leveraging the latest advances in AI to transform how engineers work from IDE environments to web-based tools and services, empowering developers to tackle projects of any scale with unprecedented efficiency. Broadly, AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS. Within AWS UC, Amazon Dedicated Cloud (ADC) roles engage with AWS customers who require specialized security solutions for their cloud services. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, VA, Arlington
The Global Real Estate and Facilities (GREF) team provides real estate transaction expertise, business partnering, space & occupancy planning, design and construction, capital investment program management and facility maintenance and operations for Amazon’s corporate office portfolio across multiple countries. We partner with suppliers to ensure quality, innovation and operational excellence with Amazon’s business and utilize customer driven feedback to continuously improve and exceed employee expectations. Within GREF, the newly formed Global Transformation & Insights (GTI) team is responsible for Customer Insights, Business Insights, Creative, and Communications. We are a group of builders, creators, innovators and go getters. We are customer obsessed, and index high on Ownership. We Think Big, and move fast, and constantly challenge one another while collaborating on "what else", "how might we", and "how can I help". We celebrate the unique perspectives we each bring to the table. We thrive in ambiguity. The ideal Senior Data Scientist candidate thrives in ambiguous environments where the business problem is known, though the technical strategy is not defined. They are able to investigate and develop strategies and concepts to frame a solution set and enable detailed design to commence. They must have strong problem-solving capabilities to isolate, define, resolve complex problems, and implement effective and efficient solutions. They should have experience working in large scale organizations – where data sets are large and complex. They should have high judgement with the ability to balance the right data fidelity with right speed with right confidence level for various stages of analysis and purposes. They should have experience partnering with a broad set of functional teams and levels with the ability to adjust and synthesize their approaches, assumptions, and recommendations to audiences with varying levels of technical knowledge. They are mentors and strong partners with research scientists and other data scientists. Key job responsibilities - Demonstrate advanced technical expertise in data science - Provide scientific and technical leadership within the team - Stay current with emerging technologies and methodologies - Apply data science techniques to solve business problems - Guide and mentor junior data scientists - Share knowledge about scientific advancements with team members - Contribute to the technical growth of the organization - Work on complex, high-impact projects - Influence data science strategy and direction - Collaborate across teams to drive data-driven decision making
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. The ideal candidate will contribute to research and implementation that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Implement and optimize control algorithms for robot locomotion - Support development of behaviors that enable robots to traverse diverse terrain - Contribute to methods that integrate stability, locomotion, and manipulation tasks - Help create dynamics models and simulations that enable sim2real transfer of algorithms - Collaborate effectively with multi-disciplinary teams on hardware and algorithms for loco-manipulation
US, WA, Bellevue
Amazon’s Middle Mile Planning Research and Optimization Science group (mmPROS) is looking for a Senior Research Scientist specializing in design and evaluation of algorithms for predictive modeling and optimization applied to large-scale transportation planning systems. This includes the development of novel machine learning and causal modeling techniques to improve on marketplace optimization solutions. Middle Mile Air and Ground transportation represents one of the fastest growing logistics areas within Amazon. Amazon Fulfillment Services transports millions of packages via air and ground and continues to grow year over year. The scale of this operation challenges Amazon to design, build and operate robust transportation networks that minimize the overall operational cost while meeting all customer deadlines. The Middle Mile Planning Research and Optimization Science group is charged with developing an evolving suite of decision support and optimization tools to facilitate the design of efficient air and ground transport networks, optimize the flow of packages within the network to efficiently align network capacity and shipment demand, set prices, and effectively utilize scarce resources, such as aircraft and trucks. Time horizons for these tools vary from years and months for long-term planning to hours and minutes for near-term operational decision making and disruption recovery. These tools rely heavily on mathematical optimization, stochastic simulation, meta-heuristic and machine learning techniques. In addition, Amazon often finds existing techniques do not effectively match our unique business needs which necessitates the innovation and development of new approaches and algorithms to find an adequate solution. As an Applied Scientist responsible for middle mile transportation, you will be working closely with different teams including business leaders and engineers to design and build scalable products operating across multiple transportation modes. You will create experiments and prototype implementations of new learning algorithms and prediction techniques. You will have exposure to top level leadership to present findings of your research. You will also work closely with other scientists and also engineers to implement your models within our production system. You will implement solutions that are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility, and make decisions that affect the way we build and integrate algorithms across our product portfolio.
IN, KA, Bengaluru
Alexa+ is Amazon’s next-generation, AI-powered virtual assistant. Building on the original Alexa, it uses generative AI to deliver a more conversational, personalised, and effective experience. Alexa Sensitive Content Intelligence (ASCI) team is developing responsible AI (RAI) solutions for Alexa+, empowering it to provide useful information responsibly. The team is currently looking for Senior Applied Scientists with a strong background in NLP and/or CV to design and develop ML solutions in the RAI space using generative AI across all languages and countries. A Senior Applied Scientist will be a tech lead for a team of exceptional scientists to develop novel algorithms and modeling techniques to advance the state of the art in NLP or CV related tasks. You will work in a dynamic, fast-paced organization where scientists, engineers, and product managers work together to build customer facing experiences. You will collaborate with and mentor other scientists to raise the bar of scientific research in Amazon. Your work will directly impact our customers in the form of products and services that make use of speech, language, and computer vision technologies. We are looking for a leader with strong technical experiences a passion for building scientific driven solutions in a fast-paced environment. You should have good understanding of Artificial Intelligence (AI), Natural Language Understanding (NLU), Machine Learning (ML), Dialog Management, Automatic Speech Recognition (ASR), and Audio Signal Processing where to apply them in different business cases. You leverage your exceptional technical expertise, a sound understanding of the fundamentals of Computer Science, and practical experience of building large-scale distributed systems to creating reliable, scalable, and high-performance products. In addition to technical depth, you must possess exceptional communication skills and understand how to influence key stakeholders. You will be joining a select group of people making history producing one of the most highly rated products in Amazon's history, so if you are looking for a challenging and innovative role where you can solve important problems while growing as a leader, this may be the place for you. Key job responsibilities You'll lead the science solution design, run experiments, research new algorithms, and find new ways of optimizing customer experience. You set examples for the team on good science practice and standards. Besides theoretical analysis and innovation, you will work closely with talented engineers and ML scientists to put your algorithms and models into practice. Your work will directly impact the trust customers place in Alexa, globally. You contribute directly to our growth by hiring smart and motivated Scientists to establish teams that can deliver swiftly and predictably, adjusting in an agile fashion to deliver what our customers need. A day in the life You will be working with a group of talented scientists on researching algorithm and running experiments to test scientific proposal/solutions to improve our sensitive contents detection and mitigation. This will involve collaboration with partner teams including engineering, PMs, data annotators, and other scientists to discuss data quality, policy, and model development. You will mentor other scientists, review and guide their work, help develop roadmaps for the team. You work closely with partner teams across Alexa to deliver platform features that require cross-team leadership. About the hiring group About the team The mission of the Alexa Sensitive Content Intelligence (ASCI) team is to (1) minimize negative surprises to customers caused by sensitive content, (2) detect and prevent potential brand-damaging interactions, and (3) build customer trust through appropriate interactions on sensitive topics. The term “sensitive content” includes within its scope a wide range of categories of content such as offensive content (e.g., hate speech, racist speech), profanity, content that is suitable only for certain age groups, politically polarizing content, and religiously polarizing content. The term “content” refers to any material that is exposed to customers by Alexa (including both 1P and 3P experiences) and includes text, speech, audio, and video.
US, MA, N.reading
Amazon Industrial Robotics is seeking exceptional talent to help develop the next generation of advanced robotics systems that will transform automation at Amazon's scale. We're building revolutionary robotic systems that combine cutting-edge AI, sophisticated control systems, and advanced mechanical design to create adaptable automation solutions capable of working safely alongside humans in dynamic environments. This is a unique opportunity to shape the future of robotics and automation at an unprecedented scale, working with world-class teams pushing the boundaries of what's possible in robotic dexterous manipulation, locomotion, and human-robot interaction. This role presents an opportunity to shape the future of robotics through innovative applications of deep learning and large language models. At Amazon Industrial Robotics we leverage advanced robotics, machine learning, and artificial intelligence to solve complex operational challenges at an unprecedented scale. Our fleet of robots operates across hundreds of facilities worldwide, working in sophisticated coordination to fulfill our mission of customer excellence. We are pioneering the development of dexterous manipulation system that: - Enables unprecedented generalization across diverse tasks - Enables contact-rich manipulation in different environments - Seamlessly integrates low-level skills and high-level behaviors - Leverage mechanical intelligence, multi-modal sensor feedback and advanced control techniques. The ideal candidate will contribute to research that bridges the gap between theoretical advancement and practical implementation in robotics. You will be part of a team that's revolutionizing how robots learn, adapt, and interact with their environment. Join us in building the next generation of intelligent robotics systems that will transform the future of automation and human-robot collaboration. Key job responsibilities - Design and implement methods for dexterous manipulation with single and dual arm manipulation - Leverage simulation and real-world data collection to create large datasets for model development - Develop a hierarchical system that combines low-level control with high-level planning - Utilize state-of-the-art manipulation models and optimal control techniques - Collaborate effectively with multi-disciplinary teams to co-design hardware and algorithms for dexterous manipulation
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.