New contrastive-learning methods for better data representation

New loss functions enable better approximation of the optimal loss and more-useful representations of multimodal data.

Many recent advances in artificial intelligence are the result of representation learning: a machine learning model learns to represent data items as vectors in a multidimensional space, where geometric relationships between vectors correspond to semantic relationships between items.

The M5 team at Amazon strives to construct general-purpose semantic representations of data related to the Amazon Store — product descriptions, queries, reviews, and more — that can be employed by machine learning (ML) systems throughout Amazon. Our approach involves leveraging all accessible data for each entity, often spanning multiple modalities.

One of the most successful ways to produce general-purpose representations is through contrastive learning, in which a model is trained on pairs of inputs, which are either positive (similar inputs/products) or negative (dissimilar inputs/products). The model learns to pull positive examples together and push negative examples apart.

Related content
Four CVPR papers from Prime Video examine a broad set of topics related to efficient model training for understanding and synthesizing long-form cinematic content.

In a pair of recent papers, M5 researchers have made substantial contributions to the theory and practice of contrastive learning. In “Why do we need large batch sizes in contrastive learning? A gradient-bias perspective”, presented at the 2022 Neural Information Processing Systems (NeurIPS) conference, we propose a new contrastive-learning loss function that enables models to converge on useful representations with lower memory cost and less training data.

And in “Understanding and constructing latent modality structures in multi-modal representation learning”, presented at this year’s Computer Vision and Pattern Recognition conference (CVPR), we propose geometric constraints on the representations of different modes of the same data item — say, image and text — that are more useful for downstream tasks than simply trying to resolve both representations to the same point in the representational space.

Do we need large batch sizes in contrastive learning?

In contrast with standard ML methods, contrastive learning typically requires very large batch sizes to achieve good performance: several popular models, for instance, require tens of thousands of training examples, significantly increasing the memory overhead; reducing the batch size can impair performance. In our NeurIPS paper, we attempt to understand this phenomenon and to propose techniques for mitigating it.

Related content
Two methods presented at CVPR achieve state-of-the-art results by imposing additional structure on the representational space.

Part of the appeal of contrastive learning is that it’s unsupervised, meaning it doesn’t require data annotation. Positive pairs can be generated by mathematically transforming an “anchor sample” and pairing the transformed version with the original; negative pairs can be generated by pairing an anchor sample with transformed versions of other anchor samples. With image data, a transformation might involve re-cropping, reversing, or distorting the colors of the anchor sample; with textual data, a transformation might involve substituting synonyms for the words in a sentence.

Given a measure of similarity between vectors in the representational space, the standard loss function for contrastive learning involves a ratio whose numerator includes the similarity between an anchor sample and one of its transformations; the denominator includes the sum of the similarities of the anchor sample and all possible negative samples. The goal of training is to maximize that ratio.

In principle, given the possibility of applying transformations to negative samples, “all possible negative samples” could describe an infinite set. In practice, contrastive learning typically just relies on the negative examples available in the training batch. Hence the need for large batch sizes — to approximate an infinite sum.

contrastive_learning [Read-Only].png
The contrastive-learning framework. Approximating an infinite sum with the samples in a finite minibatch of training data can introduce gradient bias.

If the distribution of minibatch samples differs from the distribution of possible negatives, however, this approximation can bias the model. One difficulty in correcting the bias is that, because the loss function contrasts each positive pair with all possible negatives at once, in a ratio, it cannot be decomposed into a sum of sub-losses.

We address the decomposability problem using Bayesian augmentation. The general approach is that, for each anchor sample, we create a random auxiliary variable, which can be thought of as a weight applied to the anchor sample’s similarity scores. Using identity under the gamma function, we can show that the auxiliary variable follows a gamma distribution, which is easy to sample. As a consequence, we can rewrite the loss in an exponential rather than a fractional form, making it decomposable.

During training, we begin by sampling the auxiliary variables for the current batch of data from a gamma distribution, giving us the weight of the similarity scores for all the anchor samples. Conditioned on the sampled values, we then apply maximum likelihood estimation to optimize the parameters of the model, which will consider the sampled weights on the similarity scores from the first step. We then repeat this process for the entire dataset, summing a sequence of (weighted) sub-losses to produce a cumulative loss. In our paper, we show that this procedure will converge toward the expected loss for the original contrastive-loss function, with its infinite sum in the denominator.

Contrastive-learning losses.png
Results of 10 training runs on synthetic data with added noise, comparing a model trained with our decomposable loss function (red) to one trained with the conventional loss function (blue). With our loss, the model consistently converged to the optimum (1.0), while with the conventional loss, it never did.

We evaluate our approach through a number of experiments. In one, we used simulated data, into which we injected noise to simulate bias. Then we used both our loss and the conventional loss function to train a model 10 times, with different initialization values. At heavy noise levels, the model trained with the conventional loss failed to converge, while ours consistently converged to the optimum.

We also evaluated the models on a variety of downstream tasks, including zero-/few-shot image classification and image/text retrieval. Our approach showed significant performance improvement over state-of-the-art baseline methods.

What geometries work best for multimodal representation matching?

At M5, we are building scalable models that can handle multimodal data — for instance, multilingual models that translate between product descriptions in different languages or multi-entity models that jointly model different images of the same product. Contrastive learning is a promising method for building such models: data in different modalities that are associated with the same products can be treated as positive pairs, and contrastive learning pulls them together in the representational space.

Related content
A new metric-learning loss function groups together superclasses and learns commonalities within them.

We theoretically investigated whether the standard contrastive-learning framework is optimal in terms of the prediction error rate on downstream tasks, and the surprising answer is no. In our CVPR paper, we prove that if the information gap between two modalities is large — that is, if you can’t infer much about one modality from the other — then the best prediction error we can hope to achieve using standard contrastive-learning representations is larger than that we can achieve if we simply train a machine learning model directly on data in a single modality.

This makes some intuitive sense. Ideally, contrastive learning would pull the different modalities so tightly together that they would essentially resolve to a single point in the representational space. But of course, the reason to use multimodal representations for downstream tasks is that each modality may capture useful information that the other does not. Collapsing the different modalities’ representations together neutralizes this advantage.

Consequently, in our CVPR paper, we explore different geometrical relationships in the representational space that can establish correlations between multimodal data without sacrificing information specific to each mode. We propose three general approaches to constructing modality structures in the representational space, suited to intramodal representation, intermodal representation, and a combination of the two:

  1. a deep feature separation loss for intramodality regularization, which uses two types of neural network components to separate different modality information: one component captures information that’s shared between modalities (tuned according to the standard contrastive-learning loss), and the other, which is orthogonal to the first, captures information unique to the modality;
  2. a “Brownian-bridge” loss for intermodality regularization, which uses Brownian motion to plot several trajectories/transitions between the representation of one modality (say, text) and the other (say, an image) and constrains representations of augmented data to lie along one of those paths; and
  3. a geometric-consistency loss for both intra- and intermodality regularization, which enforces symmetry in the geometric relationships between representations in one modality and the corresponding representations in the other modality, while simultaneously enforcing symmetries in cross-modal geometric relationships.
Contrastive learning.png
Three types of modality structures that can improve modality representation learning for downstream tasks. (1) With deep feature separation, a model produces two orthogonal vectors for each modality, one that encodes information shared across modalities and one that encodes mode-specific information. (2) Brownian bridges use Brownian motion to generate trajectories/transitions between representations of data in different modes, defining a subspace in which the representations of augmented data are induced to lie. (3) Geometric consistency enforces symmetries in the relationships between data representations, both within modes (orange-orange and blue-blue) and across modes (blue-orange).

We have conducted extensive experiments on two popular multimodal representation-learning frameworks, the CLIP-based two-tower model and the ALBEF-based fusion model. We tested our model on a variety of tasks, including zero-/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on multimodal representation learning.

Going forward

Our NeurIPS and CVPR papers represent only two interesting projects from our M5 team. There is a lot more research on multimodal learning going on in M5. This includes generative models for images, videos, and text (e.g. Stable Diffusion, DreamBooth) to enable data synthesis and representation learning and training and applying large language models to enhance customer shopping experiences. We expect to report on more research highlights in the near future.

Research areas

Related content

US, NY, New York
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Senior Applied Scientist to work on pre-training methodologies for Generative Artificial Intelligence (GenAI) models. You will interact closely with our customers and with the academic and research communities. Key job responsibilities Join us to work as an integral part of a team that has experience with GenAI models in this space. We work on these areas: - Scaling laws - Hardware-informed efficient model architecture, low-precision training - Optimization methods, learning objectives, curriculum design - Deep learning theories on efficient hyperparameter search and self-supervised learning - Learning objectives and reinforcement learning methods - Distributed training methods and solutions - AI-assisted research About the team The AGI team has a mission to push the envelope in GenAI with Large Language Models (LLMs) and multimodal systems, in order to provide the best-possible experience for our customers.
US, WA, Seattle
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! Key job responsibilities - Develop ML models for various recommendation & search systems using deep learning, online learning, and optimization methods - Work closely with other scientists, engineers and product managers to expand the depth of our product insights with data, create a variety of experiments to determine the high impact projects to include in planning roadmaps - Stay up-to-date with advancements and the latest modeling techniques in the field - Publish your research findings in top conferences and journals A day in the life We're using advanced approaches such as foundation models to connect information about our videos and customers from a variety of information sources, acquiring and processing data sets on a scale that only a few companies in the world can match. This will enable us to recommend titles effectively, even when we don't have a large behavioral signal (to tackle the cold-start title problem). It will also allow us to find our customer's niche interests, helping them discover groups of titles that they didn't even know existed. We are looking for creative & customer obsessed machine learning scientists who can apply the latest research, state of the art algorithms and ML to build highly scalable page personalization solutions. You'll be a research leader in the space and a hands-on ML practitioner, guiding and collaborating with talented teams of engineers and scientists and senior leaders in the Prime Video organization. You will also have the opportunity to publish your research at internal and external conferences.
US, NY, New York
Prime Video is a first-stop entertainment destination offering customers a vast collection of premium programming in one app available across thousands of devices. Prime members can customize their viewing experience and find their favorite movies, series, documentaries, and live sports – including Amazon MGM Studios-produced series and movies; licensed fan favorites; and programming from Prime Video add-on subscriptions such as Apple TV+, Max, Crunchyroll and MGM+. All customers, regardless of whether they have a Prime membership or not, can rent or buy titles via the Prime Video Store, and can enjoy even more content for free with ads. Are you interested in shaping the future of entertainment? Prime Video's technology teams are creating best-in-class digital video experience. As a Prime Video technologist, you’ll have end-to-end ownership of the product, user experience, design, and technology required to deliver state-of-the-art experiences for our customers. You’ll get to work on projects that are fast-paced, challenging, and varied. You’ll also be able to experiment with new possibilities, take risks, and collaborate with remarkable people. We’ll look for you to bring your diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. With global opportunities for talented technologists, you can decide where a career Prime Video Tech takes you! We are looking for a self-motivated, passionate and resourceful Applied Scientist to bring diverse perspectives, ideas, and skill-sets to make Prime Video even better for our customers. You will spend your time as a hands-on machine learning practitioner and a research leader. You will play a key role on the team, building and guiding machine learning models from the ground up. At the end of the day, you will have the reward of seeing your contributions benefit millions of Amazon.com customers worldwide. Key job responsibilities - Develop AI solutions for various Prime Video Search systems using Deep learning, GenAI, Reinforcement Learning, and optimization methods; - Work closely with engineers and product managers to design, implement and launch AI solutions end-to-end; - Design and conduct offline and online (A/B) experiments to evaluate proposed solutions based on in-depth data analyses; - Effectively communicate technical and non-technical ideas with teammates and stakeholders; - Stay up-to-date with advancements and the latest modeling techniques in the field; - Publish your research findings in top conferences and journals. About the team Prime Video Search Science team owns science solution to power search experience on various devices, from sourcing, relevance, ranking, to name a few. We work closely with the engineering teams to launch our solutions in production.
US, CA, San Francisco
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Twitch is the world’s biggest live streaming service, with global communities built around gaming, entertainment, music, sports, cooking, and more. It is where thousands of communities come together for whatever, every day. We’re about community, inside and out. You’ll find coworkers who are eager to team up, collaborate, and smash (or elegantly solve) problems together. We’re on a quest to empower live communities, so if this sounds good to you, see what we’re up to on LinkedIn and X, and discover the projects we’re solving on our Blog. Be sure to explore our Interviewing Guide to learn how to ace our interview process. You can work in San Francisco, CA or Seattle, WA. Perks - Medical, Dental, Vision & Disability Insurance - 401(k) - Maternity & Parental Leave - Flexible PTO - Amazon Employee Discount
US, WA, Bellevue
The Artificial General Intelligence (AGI) team is looking for a passionate, talented, and inventive Applied Scientist with a strong deep learning background, to help build industry-leading technology with Large Language Models (LLMs) and multimodal systems. Key job responsibilities As an Applied Scientist with the AGI team, you will work with world-class scientists and engineers to develop novel data, modeling and engineering solutions to support the responsible AI initiatives at AGI. Your work will directly impact our customers in the form of products and services that make use of audio technology. About the team While the rapid advancements in Generative AI have captivated global attention, we see these as just the starting point. Our team is dedicated to pushing the boundaries of what’s possible, leveraging Amazon’s unparalleled ML infrastructure, computing resources, and commitment to responsible AI principles. And Amazon’s leadership principle of customer obsession guides our approach, prioritizing our customers’ needs and preferences each step of the way.
US, WA, Bellevue
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! As a Quantitative Researcher on our team, you will be working at the intersection of mathematics, computer science, and finance, you will collaborate with a diverse team of engineers in a fast-paced, intellectually challenging environment where innovative thinking is encouraged and rewarded. We operate at Amazon's large scale with the energy of a nimble start-up. If you have a learner's mindset, enjoy solving challenging problems, and value an inclusive team culture, you will thrive in this role, and we hope to hear from you. Key job responsibilities * Conduct statistical analyses on web-scale datasets to develop state-of-the-art multimodal large language models * Conceptualize and develop mathematical models, data sampling and preparation strategies to continuously improve existing algorithms * Identify and utilize data sources to drive innovation and improvements to our LLMs About the team We are passionate engineers and scientists dedicated to pushing the boundaries of innovation. We evaluate and represent the customer perspective through accurate benchmarking.
US, CA, Sunnyvale
The Artificial General Intelligence (AGI) team is looking for a highly skilled and experienced Senior Applied Scientist, to lead the development and implementation of algorithms and models for supervised fine-tuning and reinforcement learning through human feedback; with a focus across text, image, and video modalities. As a Senior Applied Scientist, you will play a critical role in driving the development of Generative AI (Gen AI) technologies that can handle Amazon-scale use cases and have a significant impact on our customers' experiences. Key job responsibilities - Collaborate with cross-functional teams of engineers, product managers, and scientists to identify and solve complex problems in GenAI - Design and execute experiments to evaluate the performance of different algorithms and models, and iterate quickly to improve results - Think big about the arc of development of GenAI over a multi-year horizon, and identify new opportunities to apply these technologies to solve real-world problems - Communicate results and insights to both technical and non-technical audiences, including through presentations and written reports - Mentor and guide junior scientists and engineers, and contribute to the overall growth and development of the team
MX, DIF, Mexico City
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Machine Learning team in Mexico City. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning, LLMs and Agentic AI, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Design, implement, and evolve Agentic AI systems that can autonomously perceive their environment, reason about context, and take actions across business workflows—while ensuring human-in-the-loop oversight for high-stakes decisions. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise leadership, both tech and non-tech. - Support technical trade-offs between short-term needs and long-term goals.
BR, SP, Sao Paulo
Do you like working on projects that are highly visible and are tied closely to Amazon’s growth? Are you seeking an environment where you can drive innovation leveraging the scalability and innovation with Amazon's AWS cloud services? The Amazon International Technology Team is hiring Applied Scientists to work in our Software Development Center in Sao Paulo. The Intech team builds International extensions and new features of the Amazon.com web site for individual countries and creates systems to support Amazon operations. We have already worked in Germany, France, UK, India, China, Italy, Brazil and more. Key job responsibilities About you You want to make changes that help millions of customers. You don’t want to make something 10% better as a part of an enormous team. Rather, you want to innovate with a small community of passionate peers. You have experience in analytics, machine learning and big data, and a desire to learn more about these subjects. You want a trusted role in strategy and product design. You put the customer first in your thinking. You have great problem solving skills. You research the latest data technologies and use them to help you innovate and keep costs low. You have great judgment and communication skills, and a history of delivering results. Your Responsibilities - Define and own complex machine learning solutions in the consumer space, including targeting, measurement, creative optimization, and multivariate testing. - Influence the broader team's approach to integrating machine learning into business workflows. - Advise senior leadership, both tech and non-tech. - Make technical trade-offs between short-term needs and long-term goals.