New contrastive-learning methods for better data representation

New loss functions enable better approximation of the optimal loss and more-useful representations of multimodal data.

Many recent advances in artificial intelligence are the result of representation learning: a machine learning model learns to represent data items as vectors in a multidimensional space, where geometric relationships between vectors correspond to semantic relationships between items.

The M5 team at Amazon strives to construct general-purpose semantic representations of data related to the Amazon Store — product descriptions, queries, reviews, and more — that can be employed by machine learning (ML) systems throughout Amazon. Our approach involves leveraging all accessible data for each entity, often spanning multiple modalities.

One of the most successful ways to produce general-purpose representations is through contrastive learning, in which a model is trained on pairs of inputs, which are either positive (similar inputs/products) or negative (dissimilar inputs/products). The model learns to pull positive examples together and push negative examples apart.

Related content
Four CVPR papers from Prime Video examine a broad set of topics related to efficient model training for understanding and synthesizing long-form cinematic content.

In a pair of recent papers, M5 researchers have made substantial contributions to the theory and practice of contrastive learning. In “Why do we need large batch sizes in contrastive learning? A gradient-bias perspective”, presented at the 2022 Neural Information Processing Systems (NeurIPS) conference, we propose a new contrastive-learning loss function that enables models to converge on useful representations with lower memory cost and less training data.

And in “Understanding and constructing latent modality structures in multi-modal representation learning”, presented at this year’s Computer Vision and Pattern Recognition conference (CVPR), we propose geometric constraints on the representations of different modes of the same data item — say, image and text — that are more useful for downstream tasks than simply trying to resolve both representations to the same point in the representational space.

Do we need large batch sizes in contrastive learning?

In contrast with standard ML methods, contrastive learning typically requires very large batch sizes to achieve good performance: several popular models, for instance, require tens of thousands of training examples, significantly increasing the memory overhead; reducing the batch size can impair performance. In our NeurIPS paper, we attempt to understand this phenomenon and to propose techniques for mitigating it.

Related content
Two methods presented at CVPR achieve state-of-the-art results by imposing additional structure on the representational space.

Part of the appeal of contrastive learning is that it’s unsupervised, meaning it doesn’t require data annotation. Positive pairs can be generated by mathematically transforming an “anchor sample” and pairing the transformed version with the original; negative pairs can be generated by pairing an anchor sample with transformed versions of other anchor samples. With image data, a transformation might involve re-cropping, reversing, or distorting the colors of the anchor sample; with textual data, a transformation might involve substituting synonyms for the words in a sentence.

Given a measure of similarity between vectors in the representational space, the standard loss function for contrastive learning involves a ratio whose numerator includes the similarity between an anchor sample and one of its transformations; the denominator includes the sum of the similarities of the anchor sample and all possible negative samples. The goal of training is to maximize that ratio.

In principle, given the possibility of applying transformations to negative samples, “all possible negative samples” could describe an infinite set. In practice, contrastive learning typically just relies on the negative examples available in the training batch. Hence the need for large batch sizes — to approximate an infinite sum.

contrastive_learning [Read-Only].png
The contrastive-learning framework. Approximating an infinite sum with the samples in a finite minibatch of training data can introduce gradient bias.

If the distribution of minibatch samples differs from the distribution of possible negatives, however, this approximation can bias the model. One difficulty in correcting the bias is that, because the loss function contrasts each positive pair with all possible negatives at once, in a ratio, it cannot be decomposed into a sum of sub-losses.

We address the decomposability problem using Bayesian augmentation. The general approach is that, for each anchor sample, we create a random auxiliary variable, which can be thought of as a weight applied to the anchor sample’s similarity scores. Using identity under the gamma function, we can show that the auxiliary variable follows a gamma distribution, which is easy to sample. As a consequence, we can rewrite the loss in an exponential rather than a fractional form, making it decomposable.

During training, we begin by sampling the auxiliary variables for the current batch of data from a gamma distribution, giving us the weight of the similarity scores for all the anchor samples. Conditioned on the sampled values, we then apply maximum likelihood estimation to optimize the parameters of the model, which will consider the sampled weights on the similarity scores from the first step. We then repeat this process for the entire dataset, summing a sequence of (weighted) sub-losses to produce a cumulative loss. In our paper, we show that this procedure will converge toward the expected loss for the original contrastive-loss function, with its infinite sum in the denominator.

Contrastive-learning losses.png
Results of 10 training runs on synthetic data with added noise, comparing a model trained with our decomposable loss function (red) to one trained with the conventional loss function (blue). With our loss, the model consistently converged to the optimum (1.0), while with the conventional loss, it never did.

We evaluate our approach through a number of experiments. In one, we used simulated data, into which we injected noise to simulate bias. Then we used both our loss and the conventional loss function to train a model 10 times, with different initialization values. At heavy noise levels, the model trained with the conventional loss failed to converge, while ours consistently converged to the optimum.

We also evaluated the models on a variety of downstream tasks, including zero-/few-shot image classification and image/text retrieval. Our approach showed significant performance improvement over state-of-the-art baseline methods.

What geometries work best for multimodal representation matching?

At M5, we are building scalable models that can handle multimodal data — for instance, multilingual models that translate between product descriptions in different languages or multi-entity models that jointly model different images of the same product. Contrastive learning is a promising method for building such models: data in different modalities that are associated with the same products can be treated as positive pairs, and contrastive learning pulls them together in the representational space.

Related content
A new metric-learning loss function groups together superclasses and learns commonalities within them.

We theoretically investigated whether the standard contrastive-learning framework is optimal in terms of the prediction error rate on downstream tasks, and the surprising answer is no. In our CVPR paper, we prove that if the information gap between two modalities is large — that is, if you can’t infer much about one modality from the other — then the best prediction error we can hope to achieve using standard contrastive-learning representations is larger than that we can achieve if we simply train a machine learning model directly on data in a single modality.

This makes some intuitive sense. Ideally, contrastive learning would pull the different modalities so tightly together that they would essentially resolve to a single point in the representational space. But of course, the reason to use multimodal representations for downstream tasks is that each modality may capture useful information that the other does not. Collapsing the different modalities’ representations together neutralizes this advantage.

Consequently, in our CVPR paper, we explore different geometrical relationships in the representational space that can establish correlations between multimodal data without sacrificing information specific to each mode. We propose three general approaches to constructing modality structures in the representational space, suited to intramodal representation, intermodal representation, and a combination of the two:

  1. a deep feature separation loss for intramodality regularization, which uses two types of neural network components to separate different modality information: one component captures information that’s shared between modalities (tuned according to the standard contrastive-learning loss), and the other, which is orthogonal to the first, captures information unique to the modality;
  2. a “Brownian-bridge” loss for intermodality regularization, which uses Brownian motion to plot several trajectories/transitions between the representation of one modality (say, text) and the other (say, an image) and constrains representations of augmented data to lie along one of those paths; and
  3. a geometric-consistency loss for both intra- and intermodality regularization, which enforces symmetry in the geometric relationships between representations in one modality and the corresponding representations in the other modality, while simultaneously enforcing symmetries in cross-modal geometric relationships.
Contrastive learning.png
Three types of modality structures that can improve modality representation learning for downstream tasks. (1) With deep feature separation, a model produces two orthogonal vectors for each modality, one that encodes information shared across modalities and one that encodes mode-specific information. (2) Brownian bridges use Brownian motion to generate trajectories/transitions between representations of data in different modes, defining a subspace in which the representations of augmented data are induced to lie. (3) Geometric consistency enforces symmetries in the relationships between data representations, both within modes (orange-orange and blue-blue) and across modes (blue-orange).

We have conducted extensive experiments on two popular multimodal representation-learning frameworks, the CLIP-based two-tower model and the ALBEF-based fusion model. We tested our model on a variety of tasks, including zero-/few-shot image classification, image-text retrieval, visual question answering, visual reasoning, and visual entailment. Our method achieves consistent improvements over existing methods, demonstrating the effectiveness and generalizability of our proposed approach on multimodal representation learning.

Going forward

Our NeurIPS and CVPR papers represent only two interesting projects from our M5 team. There is a lot more research on multimodal learning going on in M5. This includes generative models for images, videos, and text (e.g. Stable Diffusion, DreamBooth) to enable data synthesis and representation learning and training and applying large language models to enhance customer shopping experiences. We expect to report on more research highlights in the near future.

Research areas

Related content

US, WA, Seattle
Join the Worldwide Sustainability (WWS) organization where we capitalize on our size, scale, and inventive culture to build a more resilient and sustainable company. WWS manages our social and environmental impacts globally, driving solutions that enable our customers, businesses, and the world around us to become more sustainable. Sustainability Science and Innovation is a multi-disciplinary team within the WW Sustainability organization that combines science, analytics, economics, statistics, machine learning, product development, and engineering expertise to identify, evaluate and/or develop new science, technologies, and innovations that aim to address long-term sustainability challenges. We are looking for a Sr. Research Scientist to help us develop and drive innovative scientific solutions that will improve the sustainability of materials in our products, packaging, operations, and infrastructure. You will be at the forefront of exploring and resolving complex sustainability issues, bringing innovative ideas to the table, and making meaningful contributions to projects across SSI’s portfolio. This role not only demands technical expertise but also a strategic mindset and the agility to adapt to evolving sustainability challenges through self-driven learning and exploration. In this role, you will leverage your breadth of expertise in AI models and methodologies and industrial research experience to build scientific tools that inform sustainability strategies related to materials and energy. The successful applicant will lead by example, pioneering science-vetted data-driven approaches, and working collaboratively to implement strategies that align with Amazon’s long-term sustainability vision. Key job responsibilities - Develop scientific models that help solve complex and ambiguous sustainability problems, and extract strategic learnings from large datasets. - Work closely with applied scientists and software engineers to implement your scientific models. - Support early-stage strategic sustainability initiatives and effectively learn from, collaborate with, and influence stakeholders to scale-up high-value initiatives. - Support research and development of cross-cutting technologies for industrial decarbonization, including building the data foundation and analytics for new AI models. - Drive innovation in key focus areas including packaging materials, building materials, and alternative fuels. About the team Diverse Experiences: World Wide Sustainability (WWS) values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture: It’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth: We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance: We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve.
GB, MLN, Edinburgh
Do you want a role with deep meaning and the ability to make a major impact? As part of Intelligent Talent Acquisition (ITA), you'll have the opportunity to reinvent the hiring process and deliver unprecedented scale, sophistication, and accuracy for Amazon Talent Acquisition operations. ITA is an industry-leading people science and technology organization made up of scientists, engineers, analysts, product professionals and more, all with the shared goal of connecting the right people to the right jobs in a way that is fair and precise. Last year we delivered over 6 million online candidate assessments, and helped Amazon deliver billions of packages around the world by making it possible to hire hundreds of thousands of workers in the right quantity, at the right location and at exactly the right time. You’ll work on state-of-the-art research, advanced software tools, new AI systems, and machine learning algorithms, leveraging Amazon's in-house tech stack to bring innovative solutions to life. Join ITA in using technologies to transform the hiring landscape and make a meaningful difference in people's lives. Together, we can solve the world's toughest hiring problems. A day in the life As a Research Scientist, you will partner on design and development of AI-powered systems to scale job analyses enterprise-wide, match potential candidates to the jobs they’ll be most successful in, and conduct validation research for top-of-funnel AI-based evaluation tools. You’ll have the opportunity to develop and implement novel research strategies using the latest technology and to build solutions while experiencing Amazon’s customer-focused culture. The ideal scientist must have the ability to work with diverse groups of people and inter-disciplinary cross-functional teams to solve complex business problems. About the team The Lead Generation & Detection Services (LEGENDS) organization is a specialized organization focused on developing AI-driven solutions to enable fair and efficient talent acquisition processes across Amazon. Our work encompasses capabilities across the entire talent acquisition lifecycle, including role creation, recruitment strategy, sourcing, candidate evaluation, and talent deployment. The focus is on utilizing state-of-the-art solutions using Deep Learning, Generative AI, and Large Language Models (LLMs) for recruitment at scale that can support immediate hiring needs as well as longer-term workforce planning for corporate roles. We maintain a portfolio of capabilities such as job-person matching, person screening, duplicate profile detection, and automated applicant evaluation, as well as a foundational competency capability used throughout Amazon to help standardize the assessment of talent interested in Amazon.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. AGI Autonomy is focused on developing new foundational capabilities for useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. In this role, you will work closely with research teams to design, build, and maintain systems for training and evaluating state-of-the-art agent models. Our team works inside the Amazon AGI SF Lab, an environment designed to empower AI researchers and engineers to work with speed and focus. Our philosophy combines the agility of a startup with the resources of Amazon. Key job responsibilities * Evaluate performance of the training infrastructure, diagnose problems and address any gaps that exist. * Develop reliable infrastructure to schedule training and model evaluation jobs across clusters. * Work closely with researchers to create new techniques, infrastructure, and tooling around emerging research capabilities and evaluating models to meet customer needs. * Manage project prioritization, deliverables, timelines, and stakeholder communication. * Illuminate trade-offs, educate the team on best practices, and influence technical strategy. * Operate in a dynamic environment to deliver high quality software. About the team The Amazon AGI SF Lab is focused on developing new foundational capabilities for enabling useful AI agents that can take actions in the digital and physical worlds. In other words, we’re enabling practical AI that can actually do things for us and make our customers more productive, empowered, and fulfilled. The lab is designed to empower AI researchers and engineers to make major breakthroughs with speed and focus toward this goal. Our philosophy combines the agility of a startup with the resources of Amazon. By keeping the team lean, we’re able to maximize the amount of compute per person. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
US, MD, Jessup
Application deadline: Applications will be accepted on an ongoing basis Are you excited to help the US Intelligence Community design, build, and implement AI algorithms, including advanced Generative AI solutions, to augment decision making while meeting the highest standards for reliability, transparency, and scalability? The Amazon Web Services (AWS) US Federal Professional Services team works directly with US Intelligence Community agencies and other public sector entities to achieve their mission goals through the adoption of Machine Learning (ML) and Generative AI methods. We build models for text, image, video, audio, and multi-modal use cases, leveraging both traditional ML approaches and state-of-the-art generative models including Large Language Models (LLMs), text-to-image generation, and other advanced AI capabilities to fit the mission. Our team collaborates across the entire AWS organization to bring access to product and service teams, to get the right solution delivered and drive feature innovation based on customer needs. At AWS, we're hiring experienced data scientists with a background in both traditional and generative AI who can help our customers understand the opportunities their data presents, and build solutions that earn the customer trust needed for deployment to production systems. In this role, you will work closely with customers to deeply understand their data challenges and requirements, and design tailored solutions that best fit their use cases. You should have broad experience building models using all kinds of data sources, and building data-intensive applications at scale. You should possess excellent business acumen and communication skills to collaborate effectively with stakeholders, develop key business questions, and translate requirements into actionable solutions. You will provide guidance and support to other engineers, sharing industry best practices and driving innovation in the field of data science and AI. This position requires that the candidate selected must currently possess and maintain an active TS/SCI Security Clearance with Polygraph. The position further requires the candidate to opt into a commensurate clearance for each government agency for which they perform AWS work. Key job responsibilities As a Data Scientist, you will: - Collaborate with AI/ML scientists and architects to research, design, develop, and evaluate AI algorithms to address real-world challenges - Interact with customers directly to understand the business problem, help and aid them in implementation of AI solutions, deliver briefing and deep dive sessions to customers and guide customer on adoption patterns and paths to production. - Create and deliver best practice recommendations, tutorials, blog posts, sample code, and presentations adapted to technical, business, and executive stakeholder - Provide customer and market feedback to Product and Engineering teams to help define product direction - This position may require up to 25% local travel. About the team Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (diversity) conferences, inspire us to never stop embracing our uniqueness. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why flexible work hours and arrangements are part of our culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional.
IN, KA, Bengaluru
Are you passionate about building data-driven applied science solutions to drive the profitability of the business? Are you excited about solving complex real world problems? Do you have proven analytical capabilities, exceptional communication, project management skills, and the ability to multi-task and thrive in a fast-paced environment? Join us a Senior Applied Scientist to deliver applied science solutions for Amazon Payment Products. Amazon Payment Products team creates and manages a global portfolio of payment products, including co-branded credit cards, instalment financing, etc. Within this team, we are looking for a Senior Applied Scientist who will be responsible for the following: Key job responsibilities As a Senior Applied Scientist, you will be responsible for designing and deploying scalable ML, GenAI, Agentic AI solutions that will impact the payments of millions of customers and solve key customer experience issues. You will develop novel deep learning, LLM for task automation, text processing, pattern recognition, and anomaly detection problems. You will define the research and experiments strategy with an iterative execution approach to develop AI/ML models and progressively improve the results over time. You will partner with business and engineering teams to identify and solve large and significantly complex problems that require scientific innovation. You will help the team leverage your expertise, by coaching and mentoring. You will contribute to the professional development of colleagues, improving their technical knowledge and the engineering practices. You will independently as well as guide team to file for patents and/or publish research work where opportunities arise. As the Payment Products organization deals with problems that are directly related to payments of customers, the Senior Applied Scientist role will impact the large product strategy, identify new business opportunities and provides strategic direction, which will be very exciting.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities * Design and implement a modern, fast, and ergonomic development environment for AI researchers, eliminating current pain points in build times, testing workflows, and iteration speed * Build and manage CI/CD pipelines (CodePipeline, Jenkins, etc.) that support large-scale AI research workflows, including pipelines capable of orchestrating thousands of simultaneous agentic experiments * Develop tooling that bridges local development environments with remote supercomputing resources, enabling researchers to seamlessly leverage massive compute from their IDEs * Manage and optimize code repository infrastructure (GitLab, Phabricator, or similar) to support collaborative research at scale * Implement release management processes and automation to ensure reliable, repeatable deployments of research code and models * Optimize container build systems for GPU workloads, ensuring fast iteration cycles and efficient resource utilization * Work directly with researchers to understand workflow pain points and translate them into infrastructure improvements * Build monitoring and observability into development tooling to identify bottlenecks and continuously improve developer experience * Design and maintain build systems optimized for ML frameworks, CUDA code, and distributed training workloads About the team The team is shaping developer experience from the ground up. Building tools that enable researchers to move at the speed of thought: IDEs that seamlessly shell out to supercomputers, CI/CD pipelines that orchestrate thousands of agentic commands simultaneously, and build systems optimized for GPU-accelerated workflows. Your infrastructure will be the foundation that enables the next generation of AI research, directly contributing to our mission of building the most capable agents in the world.
US, CA, San Francisco
Are you interested in a unique opportunity to advance the accuracy and efficiency of Artificial General Intelligence (AGI) systems? If so, you're at the right place! We are the AGI Autonomy organization, and we are looking for a driven and talented Member of Technical Staff to join us to build state-of-the art agents. Our lab is a small, talent-dense team with the resources and scale of Amazon. Each team in the lab has the autonomy to move fast and the long-term commitment to pursue high-risk, high-payoff research. We’re entering an exciting new era where agents can redefine what AI makes possible. We’d love for you to join our lab and build it from the ground up! Key job responsibilities * Design, build, and maintain the compute platform that powers all AI research at the SF AI Lab, managing large-scale GPU pools and ensuring optimal resource utilization * Partner directly with research scientists to understand experimental requirements and develop infrastructure solutions that accelerate research velocity * Implement and maintain robust security controls and hardening measures while enabling researcher productivity and flexibility * Modernize and scale existing infrastructure by converting manual deployments into reproducible Infrastructure as Code using AWS CDK * Optimize system performance across multiple GPU architectures, becoming an expert in extracting maximum computational efficiency * Design and implement monitoring, orchestration, and automation solutions for GPU workloads at scale * Ensure infrastructure is compliant with Amazon security standards while creatively solving for research-specific requirements * Collaborate with AWS teams to leverage and influence cloud services that support AI workloads * Build distributed systems infrastructure, including Kubernetes-based orchestration, to support multi-tenant research environments * Serve as the bridge between traditional systems engineering and ML infrastructure, bringing enterprise-grade reliability to research computing About the team This role is part of the foundational infrastructure team at the SF AI Lab, responsible for the platform that enables all research across the organization. Our team serves as the critical link between Amazon's enterprise infrastructure and the Lab's research needs. We are experts in performance optimization, systems architecture, and creative problem-solving—finding ways to push the boundaries of what's possible while maintaining security and reliability standards. We work closely with research scientists, understanding their experimental needs and translating them into robust, scalable infrastructure solutions. Our team has deep expertise in ML framework internals and GPU optimization, but we're also pragmatic systems engineers who build traditional infrastructure with enterprise-grade quality. We value engineers who can balance research velocity with operational excellence, who bring curiosity about ML while maintaining strong fundamentals in systems engineering. This is a small, high-impact team where your work directly enables breakthrough AI research. You'll have the opportunity to work with some of the most advanced AI infrastructure in the world while building the skills that define the future of ML systems engineering.
US, NY, New York
About Sponsored Products and Brands The Sponsored Products and Brands team at Amazon Ads is re-imagining the advertising landscape through industry leading generative AI technologies, revolutionizing how millions of customers discover products and engage with brands across Amazon.com and beyond. We are at the forefront of re-inventing advertising experiences, bridging human creativity with artificial intelligence to transform every aspect of the advertising lifecycle from ad creation and optimization to performance analysis and customer insights. We are a passionate group of innovators dedicated to developing responsible and intelligent AI technologies that balance the needs of advertisers, enhance the shopping experience, and strengthen the marketplace. If you're energized by solving complex challenges and pushing the boundaries of what's possible with AI, join us in shaping the future of advertising. About our team The Search Ranking and Interleaving (R&I) team within Sponsored Products and Brands is responsible for determining which ads to show and the quality of ads shown on the search page (e.g., relevance, personalized and contextualized ranking to improve shopper experience, where to place them, and how many ads to show on the search page. This helps shoppers discover new products while helping advertisers put their products in front of the right customers, aligning shoppers’, advertisers’, and Amazon’s interests. To do this, we apply a broad range of GenAI and ML techniques to continuously explore, learn, and optimize the ranking and allocation of ads on the search page. We are an interdisciplinary team with a focus on improving the SP experience in search by gaining a deep understanding of shopper pain points and developing new innovative solutions to address them. A day in the life As an Applied Scientist on this team, you will identify big opportunities for the team to make a direct impact on customers and the search experience. You will work closely with with search and retail partner teams, software engineers and product managers to build scalable real-time GenAI and ML solutions. You will have the opportunity to design, run, and analyze A/B experiments that improve the experience of millions of Amazon shoppers while driving quantifiable revenue impact while broadening your technical skillset. Key job responsibilities - Solve challenging science and business problems that balance the interests of advertisers, shoppers, and Amazon. - Drive end-to-end GenAI & Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Develop real-time machine learning algorithms to allocate billions of ads per day in advertising auctions. - Develop efficient algorithms for multi-objective optimization using deep learning methods to find operating points for the ad marketplace then evolve them - Research new and innovative machine learning approaches. - Recruit Scientists to the team and provide mentorship.