Interspeech: Where speech recognition and synthesis converge

Senior principal scientist Jasha Droppo on the shared architectures of large language models and spectrum quantization text-to-speech models — and other convergences between the two fields.

As the start of this year’s Interspeech draws near, “generative AI” has become a watchword in both the machine learning community and the popular press, where it generally refers to models that synthesize text or images.

Text-to-speech (TTS) models, which are a major area of research at Interspeech, have, in some sense, always been “generative”. But as Jasha Droppo, a senior principal scientist in the Alexa AI organization, explains, TTS, too, has been reshaped by the new generative-AI paradigm.

Jasha Droppo Amazon Science.jpg
Jasha Droppo, a senior principal scientist in the Alexa AI organization.

The first neural TTS models were trained in a “point-to-point” fashion, says Droppo, whose own Interspeech paper is on speech synthesis.

“Let's say you're estimating spectrograms — and a spectrogram is basically an image where every pixel, every little element of the image, is how much energy is in the signal at that time and that frequency,” Droppo explains. “We would estimate one time slice of the spectrogram, say, and have energy content over frequency for that particular time slice. And the best we could do at the time was to look at the distance between that and the speech sounds that we wanted the model to create.

“But in text-to-speech data, there are many valid ways of expressing the text. You could change the pacing; you could change the stress; you could insert pauses in different places. So this concept that there is one single point estimate that's the correct answer was just flawed.”

Generative AI offers an alternative to point-to-point training. Large language models (LLMs), for instance, compute probability distributions over sequences of words; at generation time, they simply select samples from those distributions.

“The advances in generative modeling for text-to-speech have this characteristic that they don't have one single correct answer,” Droppo says. “You're estimating the probability of being correct over all possible answers.”

The first of these generative approaches to TTS, Droppo says, was normalizing flows, which pass data through a sequence of invertible transformations (the flow) in order to approximate a prior distribution (the normalization). Next came diffusion modeling, which incrementally adds noise to data samples and trains a model to denoise the results, until, ultimately, it can generate data from random inputs.

Spectrum quantization

Most recently, Droppo says, a new approach known as spectrum quantization has generated excitement among TTS researchers.

“If we were to have an acoustic tokenizer — that is, something that takes a, say, a 100-millisecond segment of the spectrogram and turns it into an integer — if we have the right component like that, we've taken this continuous problem, this image-processing problem of modeling the spectrogram, and turned it into a unit prediction problem,” Droppo says. “The model doesn't care where these integers came from. It just knows there's a sequence, and there's some structure at a high level.”

In this respect, Droppo explains, a spectrum quantization model is very much like a causal LLM, which is trained on the task of predicting the next word in a sequence of words.

“That's all a causal LLM sees as well,” Droppo says. “It doesn't see the text; it sees text tokens. Spectrum quantization allows the model to look at speech in the exact same way the model looks at text. And now we can take all of the code and modeling and insights that we've used to scale large language models and bring that to bear on speech modeling. This is what I find exciting these days.”

Unified speech

Droppo’s work, however, is not confined to TTS; the bulk of the papers he’s coauthored at Amazon are on automatic speech recognition (ASR) and related techniques for processing acoustic input signals. The breadth of his work gives him a more holistic view of speech as a research topic.

“In my experience as a human, I can't separate the process of generating speech and understanding speech,” Droppo says. “It seems very unified to me. And I think that if I were to build the perfect machine, it would also not really differentiate between trying to understand what I'm talking about and trying to understand what the other party in the conversation is talking about.”

More specifically, Droppo says, “the problems with doing speech recognition end to end and doing TTS end to end share similar aspects, such as being able to handle words that aren't well represented in the data. An ASR system will struggle to transcribe a word it has never heard before, and a TTS system will struggle to pronounce correctly a word it has never encountered before. And so the problem spaces between these two systems, even though they're inverse with each other, tend to overlap, and the solutions that you come up with to solve one can also be applied to the other.”

As a case in point, Alexa AI researchers have used audio data generated by TTS models to train ASR models. But, Droppo says, this is just the tip of the iceberg. “At Amazon,” he says, “it's been my mission to bring text to speech and speech to text closer together.”

Research areas

Related content

US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, Pasadena
The Amazon Web Services (AWS) Center for Quantum Computing (CQC) is a multi-disciplinary team of scientists, engineers, and technicians, on a mission to develop a fault-tolerant quantum computer. We are looking to hire a Research Scientist with fabrication and data analysis experience working on all elements of a superconducting circuit. The position is on-site at our lab, located on the in Pasadena, CA. The ideal candidate will have had prior experience building software tools for data analysis and visualization to enable deep diving into fabrication details, electrical test data. We are looking for candidates with strong engineering principles, resourcefulness and data science experience. Organization and communication skills are essential. Key job responsibilities * Develop and automate data pipeline pertinent to superconducting device fabrication. * Develop analytical tools to uncover new information about established and new processes. * Develop new or contribute to modifying existing data visualization tools. * Utilize machine learning to enable better deeper dives into fabrication and related data. * Interface with various software, design, fabrication and electrical test teams to enable new functionalities. A day in the life The role will be vital to the fabrication team and quantum computing device integration mechanism. The candidate will develop software based analytical tools to enable data driven decisions across projects related to fabrication and supporting infrastructure. Each fabrication run delivers additional data. The candidate will stay close to the details of fabrication providing data analysis and quick feedback to key stakeholders. At the end of fabrication runs custom and standardized reports will be generated by the candidate to provide insights into data generated from the run. This position may require occasional weekend work. About the team AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Bellevue
Conversational AI ModEling and Learning (CAMEL) team is part of Amazon Devices organization where our mission is to build a best-in-class Conversational AI that is intuitive, intelligent, and responsive, by developing superior Large Language Models (LLM) solutions and services which increase the capabilities built into the model and which enable utilizing thousands of APIs and external knowledge sources to provide the best experience for each request across millions of customers and endpoints. We are looking for a passionate, talented, and resourceful Senior Applied Scientist in the field of LLM, Artificial Intelligence (AI), Natural Language Processing (NLP), Recommender Systems and/or Information Retrieval, to invent and build scalable solutions for a state-of-the-art context-aware conversational AI. A successful candidate will have strong machine learning background and a desire to push the envelope in one or more of the above areas. The ideal candidate would also have hands-on experiences in building Generative AI solutions with LLMs, enjoy operating in dynamic environments, be self-motivated to take on challenging problems to deliver big customer impact, moving fast to ship solutions and then iterating on user feedback and interactions. Key job responsibilities As a Senior Applied Scientist, you will leverage your technical expertise and experience to demonstrate leadership in tackling large complex problems, setting the direction and collaborating with other talented applied scientists and engineers to research and develop LLM modeling and engineering techniques to reduce friction and enable natural and contextual conversations. You will analyze, understand and improve user experiences by leveraging Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in artificial intelligence. You will work on core LLM technologies, including Prompt Engineering, Model Fine-Tuning, Reinforcement Learning from Human Feedback (RLHF), Evaluation, etc. Your work will directly impact our customers in the form of novel products and services .
US, WA, Bellevue
Amazon Devices Sales and Customer Experience is looking for a talented Applied Scientist to help invent, design, and deliver cutting-edge science solutions to make it easier for millions of customers to find their next Amazon Device they will love. In this role you will: - Be a part of a growing and vibrant team of scientists, economists, engineers, analysts, and business partners. - Use Amazon's large-scale computing and data resources to generate deep understandings of our customers, and products. - Build models to generate content and recommendations to customers; run them as large scale A/B tests directly on the retail website. - Design, implement, and deliver novel solutions to hard to solve problems. Key Performance Areas - Implement statistical or machine learning methods to solve specific business problems. - Improve upon existing methodologies by developing new data sources, testing model enhancements, and fine-tuning model parameters. - Directly contribute to development of modern automated recommendation systems - Build customer-facing reporting tools to provide insights and metrics to track model performance and explain variance - Collaborate with researchers, software developers, and business leaders to define product requirements, provide analytical support, and communicate feedback Key job responsibilities We are looking for an innovative, hands-on and customer-obsessed Scientist who can be a strategic partner to the product managers and engineers on the team. Our projects span multiple organizations and require coordination of experimentation, economic and causal analysis, and building predictive machine learning models. A successful candidate will be a problem solver who enjoys diving into data, is excited by difficult modeling challenges, is motivated to build something that will eventually become a production software system and possesses strong communication skills to effectively interface between technical and business teams. In this role, you will be a technical expert with massive impact. You will take the lead on developing advanced solutions that are key to reaching our customers with the right recommendations at the right time. Your work will directly impact the success of Amazon's growing Devices business. You will work across diverse science/engineering/business teams. You will work on critical science problems, building high quality, reliable, accurate, and consistent code sets that are aligned with our business needs. A day in the life You will work with other scientists, engineers, product managers, and marketers to develop new products that benefit our customers and help us reach our business goals. You will own solutions from end to end: conceptualization, prioritization, development and delivery. About the team We are a full stack science team that empowers product, marketing, and other business leaders to better understand customers who use Amazon devices, make decisions on product development or optimization, and measure the effectiveness of their efforts against our customer’s expectation. Our focus area is to build analytical frameworks that help the organization either access data, better understand the decisions customers are making and why, or assess customer satisfaction.
CA, ON, Toronto
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Scientist on this team, you will: - Drive end-to-end Machine Learning projects that have a high degree of ambiguity, scale, complexity. - Perform hands-on analysis and modeling of enormous data sets to develop insights that increase traffic monetization and merchandise sales, without compromising the shopper experience. - Build machine learning models, perform proof-of-concept, experiment, optimize, and deploy your models into production; work closely with software engineers to assist in productionizing your ML models. - Run A/B experiments, gather data, and perform statistical analysis. - Establish scalable, efficient, automated processes for large-scale data analysis, machine-learning model development, model validation and serving. - Research new and innovative machine learning approaches. - Recruit Applied Scientists to the team and provide mentorship. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As the Data Science Manager on this team, you will: - Lead of team of scientists, business intelligence engineers, etc., on solving science problems with a high degree of complexity and ambiguity. - Develop science roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers in the organization. - Analyze historical data to identify trends and support optimal decision making. - Apply statistical and machine learning knowledge to specific business problems and data. - Formalize assumptions about how our systems should work, create statistical definitions of outliers, and develop methods to systematically identify outliers. Work out why such examples are outliers and define if any actions needed. - Given anecdotes about anomalies or generate automatic scripts to define anomalies, deep dive to explain why they happen, and identify fixes. - Build decision-making models and propose effective solutions for the business problems you define. - Conduct written and verbal presentations to share insights to audiences of varying levels of technical sophistication. Why you will love this opportunity: Amazon has invested heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, WA, Seattle
Amazon Advertising is one of Amazon's fastest growing and most profitable businesses, responsible for defining and delivering a collection of advertising products that drive discovery and sales. Our products and solutions are strategically important to enable our Retail and Marketplace businesses to drive long-term growth. We deliver billions of ad impressions and millions of clicks and break fresh ground in product and technical innovations every day! As an Applied Science Manager in Machine Learning, you will: - Directly manage and lead a cross-functional team of Applied Scientists, Data Scientists, Economists, and Business Intelligence Engineers. - Develop and manage a research agenda that balances short term deliverables with measurable business impact as well as long term investments. - Lead marketplace design and development based on economic theory and data analysis. - Provide technical and scientific guidance to team members. - Rapidly design, prototype and test many possible hypotheses in a high-ambiguity environment, making use of both quantitative and business judgment - Advance the team's engineering craftsmanship and drive continued scientific innovation as a thought leader and practitioner. - Develop science and engineering roadmaps, run annual planning, and foster cross-team collaboration to execute complex projects. - Perform hands-on data analysis, build machine-learning models, run regular A/B tests, and communicate the impact to senior management. - Collaborate with business and software teams across Amazon Ads. - Stay up to date with recent scientific publications relevant to the team. - Hire and develop top talent, provide technical and career development guidance to scientists and engineers within and across the organization. Why you will love this opportunity: Amazon is investing heavily in building a world-class advertising business. This team defines and delivers a collection of advertising products that drive discovery and sales. Our solutions generate billions in revenue and drive long-term growth for Amazon’s Retail and Marketplace businesses. We deliver billions of ad impressions, millions of clicks daily, and break fresh ground to create world-class products. We are a highly motivated, collaborative, and fun-loving team with an entrepreneurial spirit - with a broad mandate to experiment and innovate. Impact and Career Growth: You will invent new experiences and influence customer-facing shopping experiences to help suppliers grow their retail business and the auction dynamics that leverage native advertising; this is your opportunity to work within the fastest-growing businesses across all of Amazon! Define a long-term science vision for our advertising business, driven from our customers' needs, translating that direction into specific plans for research and applied scientists, as well as engineering and product teams. This role combines science leadership, organizational ability, technical strength, product focus, and business understanding. Team video ~ https://youtu.be/zD_6Lzw8raE
US, CA, San Francisco
The AWS Center for Quantum Computing is a multi-disciplinary team of scientists, engineers, and technicians, all working to innovate in quantum computing for the benefit of our customers. We are looking to hire a Research Scientist to design and model novel superconducting quantum devices, including qubits, readout and control schemes, and advanced quantum processors. Candidates with a track record of original scientific contributions and/or software development experience will be preferred. We are looking for candidates with strong engineering principles and resourcefulness. Organization and communication skills are essential. About the team AWS Utility Computing (UC) provides product innovations — from foundational services such as Amazon’s Simple Storage Service (S3) and Amazon Elastic Compute Cloud (EC2), to consistently released new product innovations that continue to set AWS’s services and features apart in the industry. As a member of the UC organization, you’ll support the development and management of Compute, Database, Storage, Internet of Things (Iot), Platform, and Productivity Apps services in AWS, including support for customers who require specialized security solutions for their cloud services. Diverse Experiences AWS values diverse experiences. Even if you do not meet all of the qualifications and skills listed in the job description, we encourage candidates to apply. If your career is just starting, hasn’t followed a traditional path, or includes alternative experiences, don’t let it stop you from applying. Why AWS? Amazon Web Services (AWS) is the world’s most comprehensive and broadly adopted cloud platform. We pioneered cloud computing and never stopped innovating — that’s why customers from the most successful startups to Global 500 companies trust our robust suite of products and services to power their businesses. Inclusive Team Culture Here at AWS, it’s in our nature to learn and be curious. Our employee-led affinity groups foster a culture of inclusion that empower us to be proud of our differences. Ongoing events and learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences, inspire us to never stop embracing our uniqueness. Mentorship & Career Growth We’re continuously raising our performance bar as we strive to become Earth’s Best Employer. That’s why you’ll find endless knowledge-sharing, mentorship and other career-advancing resources here to help you develop into a better-rounded professional. Work/Life Balance We value work-life harmony. Achieving success at work should never come at the expense of sacrifices at home, which is why we strive for flexibility as part of our working culture. When we feel supported in the workplace and at home, there’s nothing we can’t achieve in the cloud. Hybrid Work We value innovation and recognize this sometimes requires uninterrupted time to focus on a build. We also value in-person collaboration and time spent face-to-face. Our team affords employees options to work in the office every day or in a flexible, hybrid work model near one of our U.S. Amazon offices.
US, WA, Seattle
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches
US, CA, San Diego
Do you want to join an innovative team of scientists who use machine learning and statistical techniques to help Amazon provide the best customer experience by preventing eCommerce fraud? Are you excited by the prospect of analyzing and modeling terabytes of data and creating state-of-the-art algorithms to solve real world problems? Do you like to own end-to-end business problems/metrics and directly impact the profitability of the company? Do you enjoy collaborating in a diverse team environment? If yes, then you may be a great fit to join the Amazon Buyer Risk Prevention (BRP) Machine Learning group. We are looking for a talented scientist who is passionate to build advanced algorithmic systems that help manage safety of millions of transactions every day. Key job responsibilities Use machine learning and statistical techniques to create scalable risk management systems Learning and understanding large amounts of Amazon’s historical business data for specific instances of risk or broader risk trends Design, development and evaluation of highly innovative models for risk management Working closely with software engineering teams to drive real-time model implementations and new feature creations Working closely with operations staff to optimize risk management operations, Establishing scalable, efficient, automated processes for large scale data analyses, model development, model validation and model implementation Tracking general business activity and providing clear, compelling management reporting on a regular basis Research and implement novel machine learning and statistical approaches