ICML: “Test of time” paper shows how times have changed

Amazon scientist’s award-winning paper predates — but later found applications in — the deep-learning revolution.

Amazon researchers have nine new papers at this year’s International Conference on Machine Learning (ICML), one of the top conferences in AI. Matthias Seeger, a principal applied scientist with Amazon Web Services (AWS), is a coauthor on one of them, which reports work led by AWS applied scientist Cuong Nguyen.

But it’s a paper that Seeger cowrote ten years ago that’s one of the conference highlights. On July 1, the ICML awards committee announced that Seeger and his colleagues’ 2010 paper “Gaussian process optimization in the bandit setting: no regret and experimental design” had won the conference’s Test of Time Award, which honors “a paper from ICML ten years ago that has had substantial impact on the field of machine learning, including both research and practice.”

The citation from the award committee begins, “This paper brought together the fields of Bayesian optimization, bandits, and experimental design,” and it “has since cross-fertilized these separate research domains,” Seeger adds.

Matthias Seeger
Matthias Seeger, principal applied scientist

Bayesian-optimization and bandit problems have the same general structure, Seeger explains, but “Bayesian optimization is generally done over continuous input spaces and more complicated functions,” he says. “Multi-armed bandits would normally assume finite spaces and linear or otherwise strongly restricted payoff functions. Maybe because Bayesian optimization is more flexible in this sense, it comes with a lot less solid theory. Multi-armed bandits is a more theoretically grounded area.”

Seeger and his colleagues’ 2010 paper generalized theoretical findings from the multi-armed bandit setting to Bayesian optimization (BO), providing strong performance bounds given particular choices of statistical models. This gave machine learning practitioners greater confidence in techniques they’d arrived at empirically and helped them identify circumstances in which those techniques might be less successful.

In the context of deep learning — which now dominates the field of artificial intelligence — BO is used for hyperparameter tuning, or optimizing structural features of the deep-learning model and parameters of the learning algorithm to maximize the efficacy of training on particular data.

To prove their result for BO, Seeger and his colleagues extended techniques borrowed from a third related field, experimental design. The tools they devised to bridge the related disciplines of BO, multi-armed bandits, and experimental design have proved useful to researchers working in all three; the paper has more than 1,000 citations on Google Scholar, which have helped make Seeger the fourth most highly cited researcher in the field of Bayesian optimization.

Seeger’s coauthors on the 2010 paper are Niranjan Srinivas, now a computational biologist at 10xGenomics; Andreas Krause, now a professor of computer science at ETH Zurich; and Sham Kakade, now a professor in the departments of computer science and statistics at the University of Washington.

With Bayesian optimization, Seeger explains, “you are essentially optimizing a function over some search space without actually knowing what this function looks like. You have to learn about that function as you sample it. But your real goal is finding the function’s maximum, or to sample it nearby.”

“If you sample forever, at some point you will find its optima” he adds. “But since sampling is expensive and takes time, you want to finish as rapidly as possible. So what you are really interested in is to spend as few samples as possible before you converge to something useful, very close to the optimum.”

Temperature samples.png
An example of Seeger and his colleagues’ sample selection procedure, taken from their 2010 paper. The first image (a) represents temperatures in different parts of a building; the two images at right (b and c) represent successive iterations of the procedure, in which individual sensors are briefly activated to take temperature readings (red circles). The black line represents the true temperatures, and the grey areas represent the method’s latest inference of the range of possible temperatures in each region. Crosses indicate points at which readings have already been taken. The procedure selects new sample points with the goal of either maximizing information gain (b) or finding optima (c).

Seeger and his colleagues proved that, under conditions that frequently hold for machine learning problems, the sampling process is guaranteed to converge. But they also showed that the convergence rate depends on specific problem parameters.

In BO, the function that you’re trying to optimize is a random function, Seeger explains. “Every time you plug in a point x, you get a random value f(x),” he says. A standard way to do BO is to model the outputs of the function using a probability distribution. If that distribution is Gaussian — the standard bell curve — then Bayesian optimization is said to use a Gaussian process as a surrogate model.

One of the parameters of the surrogate model is its covariance function, which describes the correlation between changes to function inputs (the x’s) and the resulting changes to the outputs (the f(x)’s). There are several families of covariance function, with an infinite range of functions within each family.

Seeger and his colleagues’ paper quantitatively relates the convergence rate of the function-sampling procedure to the specific choice of covariance function.

“Some choices of covariance function imply smooth functions, which can faithfully be interpolated from measurements nearby,” Seeger says. “Others result in rough functions, for which interpolating even across short distances is an uncertain exercise.”

From theory to practice

Machine learning researchers had conjectured that rougher covariance functions, although they may model reality better, imply slower convergence on an optimum. Seeger and his colleagues’ paper quantified this trade-off precisely. It enabled researchers to decide how much roughness they were willing to sacrifice for faster convergence.

To bound convergence rates, Seeger and his colleagues borrowed techniques from experimental design. “Here you are interested in learning about a function, but not just where its maximum is — learning about it globally, or learning about a model everywhere,” Seeger explains.

A central concept in experimental design is information gain, a quantification of how much information about a function each new sample — each new experiment — confers. Seeger and his colleagues quantified the convergence rate in BO by framing the question in terms of information gain.

“It’s pretty theoretical work,” Seeger says. “It led to a lot of follow-up work because of the links that we could show. There is quite a bit of Gaussian-process theory being brought together here, which partly fuses the different themes together.”

At Amazon, Seeger says, his work on meta-learning and automated machine learning is less theoretical, but his training still stands him in good stead. “I do think that the background that I have from back then is quite useful for me to plan ahead, in a way, and to see whether something looks right or not,” Seeger says. “I think this is quite important, because due to the explosive growth of our field, there are now so many options you can pursue. You really cannot implement all of them and try them out. You need to have some guiding principles.”

Seeger’s transition from more theoretical to more applied work mirrors that of the field itself. In the ten years since he cowrote this award-winning paper, he says, “there’s been a huge change, with the size of the field, the practical applications, the size of the models, the size of the data sets.”

“Back then, maybe because it was smaller, there were ideas being followed that wouldn’t immediately have an application, and you were actually looking into theory quite a bit,” he says. “These days, it’s a lot more driven by empirical applications and empirical work. The field has matured and is very successful in some applications, so obviously you want to focus more on whether an idea is useful in the current context or not. And that’s certainly something that I’ve learned to do a lot more since I joined Amazon.”

Research areas
About the Author
Larry Hardesty is the editor of the Amazon Science blog. Previously, he was a senior editor at MIT Technology Review and the computer science writer at the MIT News Office.

Related content

US, WA, Seattle
Job summaryWW Installments is one of the fastest growing businesses within Amazon and we are looking for an Economist to join the team. This group has been entrusted with a massive charter that will impact every customer that visits Amazon.com. We are building the next generation of features and payment products that maximize customer enablement in a simple, transparent, and customer obsessed way. Through these products, we will deliver value directly to Amazon customers improving the shopping experience for hundreds of millions of customers worldwide. Our mission is to delight our customers by building payment experiences and financial services that are trusted, valued, and easy to use from anywhere in any way.Economists at Amazon are solving some of the most challenging applied economics questions in the tech sector. Amazon economists apply the frontier of economic thinking to market design, pricing, forecasting, program evaluation, online advertising and other areas. Our economists build econometric models using our world class data systems, and apply economic theory to solve business problems in a fast-moving environment. A career at Amazon affords economists the opportunity to work with data of unparalleled quality, apply rigorous applied econometric approaches, and work with some of the most talented applied econometricians in the trade.As the Economist within WW Installments, you will be responsible for building long-term causal inference models and experiments. These analysis represent a core capability for WW Installments and businesses across Amazon. Your work will directly impact customers by influencing how objective functions are designed and which inputs are consumed for modeling. You will work across functions including machine learning, business intelligence, data engineering, software development, and finance to induce data driven decisions at every level of the organization.Key job responsibilitiesThis role will be responsible for:• Developing a causal inference and experimentation roadmap for the WW Installments Competitive Pricing team.• Apply expertise in causal and econometric modeling to develop large-scale systems that are deployed across Amazon businesses.• Identify business opportunities, define and execute modeling approach, then deliver outcomes to various Amazon businesses with an Amazon-wide perspective for solutions.• Lead the project plan from a scientific perspective on product launches including identifying potential risks, key milestones, and paths to mitigate risks• Own key inputs to reports consumed by VPs and Directors across Amazon.• Identifying new opportunities to influence business strategy and product vision using causal inference.• Continually improve the WW Installments experimentation roadmap automating and simplifying whenever possible.• Coordinate support across engineers, scientists, and stakeholders to deliver analytical projects and build proof of concept applications.• Work through significant business and technical ambiguity delivering on analytics roadmap across the team with autonomy.
US, WA, Seattle
Job summaryWW Installments is one of the fastest growing businesses within Amazon and we are looking for an Applied Scientist to join the team. This group has been entrusted with a massive charter that will impact every customer that visits Amazon.com. We are building the next generation of features and payment products that maximize customer enablement in a simple, transparent, and customer obsessed way. Through these products, we will deliver value directly to Amazon customers improving the shopping experience for hundreds of millions of customers worldwide. Our mission is to delight our customers by building payment experiences and financial services that are trusted, valued, and easy to use from anywhere in any way.As an Applied Scientist within WW Installments, you will be responsible for building machine learning models and pipelines with direct customer impact. These models represent a core capability for WW Installments and businesses across Amazon. Your work will directly impact customers by influencing how they interact with financing options to make purchases. You will work across functions including data engineering, software development, and business to induce data driven decisions at every level of the organization.Key job responsibilitiesThis role will be responsible for:• Developing production machine learning models and pipelines for the WW Installments Competitive Pricing team that directly impact customers.• Apply expertise in machine learning to develop large-scale production systems that are deployed across Amazon businesses.• Identify business opportunities, define and execute modeling approach, then deliver outcomes to various Amazon businesses with an Amazon-wide perspective for solutions.• Lead the implementation of production ML from a scientific perspective including identifying potential risks, key milestones, and paths to mitigate risks.• Identifying new opportunities to influence business strategy and product vision using data science and machine learning.• Continually improve the WW Installments ML roadmap automating and simplifying whenever possible.• Coordinate support across engineers, scientists, and stakeholders to deliver ML pipelines, analytics projects, and build proof of concept applications.• Work through significant business and technical ambiguity delivering on analytics roadmap across the team with autonomy.
US, WA, Seattle
Job summaryWW Installments is one of the fastest growing businesses within Amazon and we are looking for a Data Scientist to join the team. This group has been entrusted with a massive charter that will impact every customer that visits Amazon.com. We are building the next generation of features and payment products that maximize customer enablement in a simple, transparent, and customer obsessed way. Through these products, we will deliver value directly to Amazon customers improving the shopping experience for hundreds of millions of customers worldwide. Our mission is to delight our customers by building payment experiences and financial services that are trusted, valued, and easy to use from anywhere in any way.As a Data Scientist within WW Installments, you will be responsible for building machine learning models and pipelines with direct customer impact. These models represent a core capability for WW Installments and businesses across Amazon. Your work will directly impact customers by influencing how they interact with financing options to make purchases. You will work across functions including data engineering, software development, and business to induce data driven decisions at every level of the organization.Key job responsibilitiesThis role will be responsible for:• Developing machine learning models and pipelines for the WW Installments Competitive Pricing team.• Apply expertise in machine learning to develop large-scale systems that are deployed across Amazon businesses.• Identify business opportunities, define and execute modeling approach, then deliver outcomes to various Amazon businesses with an Amazon-wide perspective for solutions.• Lead the project plan from a scientific perspective on product launches including identifying potential risks, key milestones, and paths to mitigate risks.• Own key inputs to reports consumed by VPs and Directors across Amazon.• Identifying new opportunities to influence business strategy and product vision using data science and machine learning.• Continually improve the WW Installments ML roadmap automating and simplifying whenever possible.• Coordinate support across engineers, scientists, and stakeholders to deliver ML pipelines, analytics projects, and build proof of concept applications.• Work through significant business and technical ambiguity delivering on analytics roadmap across the team with autonomy.
US, CA, San Diego
Job summaryPrivate Brands is fast-growing within Amazon, and is a highly visible, emerging business. We have a unique business and obsess over quality and building global brands our customers love. We aspire to be part of our customers’ everyday lives by offering them unique products at compelling prices backed by Amazon’s strong customer obsessed reputation.Private Brands Intelligence (PBI) is looking for a Data Scientist to join our team in building Machine Learning solutions at scale. PBI applies Machine Learning, Causal Inference, and Econometrics/Economics to derive actionable insights about the complex economy of Amazon’s retail business. We also develop statistical models and algorithms to drive strategic business decisions and improve operations. We are an interdisciplinary team of Economists, Scientists, and Engineers incubating and building Day One solutions using cutting-edge technology, to solve some of the toughest business problems at Amazon.You will work with business leaders, scientists, economists, and engineers to translate business and functional requirements into concrete deliverables, including the design, development, testing, and deployment of highly scalable distributed services. You will partner with scientists, economists, and engineers to help invent and implement scalable ML and econometric models while building tools to help our customers gain and apply insights.This is a unique, high visibility opportunity for someone who wants to have business impact, dive deep into large-scale economic problems, enable measurable actions on the Consumer economy, and work closely with scientists and economists. We are particularly interested in candidates with experience building predictive models and working with distributed systems.As a Data Scientist, you bring business and industry context to science and technology decisions. You set the standard for scientific excellence and make decisions that affect the way we build and integrate algorithms. Your solutions are exemplary in terms of algorithm design, clarity, model structure, efficiency, and extensibility. You tackle intrinsically hard problems, acquiring expertise as needed. You decompose complex problems into straightforward solutions.
US, VA, Arlington
Job summaryThis role will sit in our new headquarters in Northern Virginia, where Amazon will invest $2.5 billion dollars, occupy 4 million square feet of energy efficient office space, and create at least 25,000 new full-time jobs.The AWS Infrastructure Data Center Planning and Delivery (DCPD) Data Science team owns supply chain management activities at a global scale.We consolidate usage and supply chain health data and forecasts at a variety of horizons to ensure that we have the right strategic lens associated with each decision we make.We identify gaps to ensure that the AWS business is able to support any and all customers who want to capitalize on the scalability, flexibility, and cost-efficiency of AWS. Our actions and decisions decide the where, how, and what will make it into each of our data centers and we need you to help us to make those decisions and clearly explain the why.The Business Insights and Optimization (BIO) team owns data science, engineering, and business intelligence solutions feeding this team.We identify gaps in our capacity planning and delivery mechanisms and design/build systems which will fix those gaps.We are end to end data product owners and the analysis, models we produce drives billions of dollars of decisions annually.Data Scientists on this team have end to end range and capabilities.They work directly with business owners to understand how they use data to drive their business.They design modeling frameworks to dive deep into these raw sources of information to get the most out of the data they have.They work directly with data engineers to build automated pipelines and production scale information systems and models.They build automated tools which will allow their results to be shared with the business at scale.They align with business owners to continuously track their work to ensure maximum impact from their projects.They monitor performance of their work to evaluate whether improvements are needed after tracking has started in production.
US, CA, Sunnyvale
Job summaryAmong the goals of the Alexa Devices AI team, is to make Alexa the most knowledgeable and trusted ally for notifications, annoucements, pickup services and voice assistance while on the go.Key job responsibilities1. As an Applied Scientist on our team you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art NLU (Natural language understanding) developments.2. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to traing Machine Learning models for their application in NLU.3. This role requires a pragmatic technical leader comfortable with ambiguity, capable of summarizing complex data and models through clear visual and written explanations.4. The ideal candidate will have experience with machine learning models and their application in AI systems. We are particularly interested in experience applying natural language processing, deep learning at scale. Additionally, we are seeking candidates with strong interest in data/research sciences and engineering, creativity, curiosity, and great judgment.5. You will interact with various stake holders: product leaders, program managers, other domain managers and developers on regular basis for requirement collections, deliveries, and other related communication6. You will help attract and recruit technical talentA day in the lifeApplied Scientist will help develop novel algorithms and apply modeling techniques to advance the state of the art in spoken language understanding (SLU) and to improve the customer experience in engaging with Alexa.About the teamThe Alexa Devices AI science team's work directly impacts the experience and engagement of customers who rely on Alexa while in-the-car, on-the-go and at-home.
US, VA, Arlington
Job summaryThe Central Science Team within Amazon’s People Experience and Technology org (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, well-being, and the value of work to Amazonians. We are an interdisciplinary team, which combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal.We are looking for an economist with expertise in applying causal inference, experimental design, or causal machine learning techniques to topics in labor, personnel, education, health, public, or behavioral economics. We are particularly interested in candidates with experience applying these skills to strategic problems with significant business and/or social policy impact.Candidates will work with economists and engineers to estimate and validate their models on large scale data, and will help business partners turn the results of their analysis into policies, programs, and actions that have a major impact on Amazon’s business and its workforce. We are looking for creative thinkers who can combine a strong economic toolbox with a desire to learn from others, and who know how to execute and deliver on big ideas.Ideal candidates will own key inputs to all stages of research projects, including model development, survey administration, experimental design, and data analysis. They will be customer-centric, working closely with business partners to define key research questions, communicate scientific approaches and findings, listen to and incorporate partner feedback, and deliver successful solutions.
US, CA, Palo Alto
Job summaryAmazon is the 4th most popular site in the US (http://www.alexa.com/topsites/countries/US). Our product search engine is one of the most heavily used services in the world, indexes billions of products, and serves hundreds of millions of customers world-wide. We are working on a new AI-first initiative to re-architect and reinvent the way we do search through the use of extremely large scale next-generation deep learning techniques. Our goal is to make step function improvements in the use of advanced Machine Learning (ML) on very large scale datasets, specifically through the use of aggressive systems engineering and hardware accelerators. This is a rare opportunity to develop cutting edge ML solutions and apply them to a problem of this magnitude. Some exciting questions that we expect to answer over the next few years include:· Can a focus on compilers and custom hardware help us accelerate model training and reduce hardware costs?· Can combining supervised multi-task training with unsupervised training help us to improve model accuracy?· Can we transfer our knowledge of the customer to every language and every locale ? The Search Science team is looking for a Senior Applied Science Manager to drive roadmap on making large business impact through application of Deep Learning models via close collaboration with partner teams. The team also has a focus on technology solution for deep-learning based embedding generation, sensitive data ingestion and applications, data quality measurement, improvement, data bias identification and reduction to achieve model fairness.Success in this role will require the courage to chart a new course. You will manage your own team to understand all aspects of the customer journey. You and your team will inform other scientists and engineers by providing insights and building models to help improving training data quality and reducing bias. The research focus includes but not limited to Natural Language Processing, recommendation, applications relevant to Amazon buyers, sellers and more. You will be working with cutting edge technologies that enable big data and parallelizable algorithms. You will play an active role in translating business and functional requirements into concrete deliverables and working closely with software development teams to put solutions into production.
US, WA, Seattle
Job summaryAmazon EC2 provides cloud computing which forms the foundation for the majority of AWS services, as well as a large portion of compute use cases for businesses and individuals around the world. A critical factor in the continued success of EC2 is the ability to provide reliable and cost effective computing. The EC2 Fleet Health and Lifecycle (EC2 FHL) organization is responsible for ensuring that the global EC2 server fleet continues to raise the bar for reliability, security, and efficiency. We are looking for seasoned engineering leaders with passion for technology and an entrepreneurial mindset. At Amazon, it is all about working hard, having fun and making history. If you are ready to make history, we want to hear from you!Come join a brand new team, EC2 Health Analytics, under EC2 Foundational Technology, to solve complex cutting-edge problems to power a faster, more robust and performant EC2 of tomorrow. The charter of our team is to improve customer experience on the EC2 fleet by analyzing hundreds of signals and driving next-generation detection and remediation tools. We apply Machine Learning to predict outcomes and optimize decisions that improve customer experience and operational efficiency. As an Applied Scientist in the EC2 Health Analytics team, you will join an industry-leading engineering team solving challenging problems at massive scale.· Build a world-class forecasting platform that scales to handling billions of time series data in real time.· Drive fleet utilization improvement where each 1% means tens of millions of additional free cash flow.· Automate tactical and strategic capacity planning tools to optimize for service availability and infrastructure cost.· Build recommendation algorithms for improving the AWS customer experience.· · Reduce dependence on manual troubleshooting for deep-dives.What you will learn:· State-of-the-art analytics and forecasting methodologies.· Application of machine learning to large-scale data sets.· · Product recommendation algorithms.· Resource management and admission control for the Cloud.· The internals of all AWS services.Inclusive Team CultureHere at AWS, we embrace our differences. We are committed to furthering our culture of inclusion. We have ten employee-led affinity groups, reaching 40,000 employees in over 190 chapters globally. We have innovative benefit offerings, and host annual and ongoing learning experiences, including our Conversations on Race and Ethnicity (CORE) and AmazeCon (gender diversity) conferences.Work/Life BalanceOur team puts a high value on work-life balance. It isn’t about how many hours you spend at home or at work; it’s about the flow you establish that brings energy to both parts of your life. We believe striking the right balance between your personal and professional life is critical to life-long happiness and fulfillment. We offer flexibility in working hours and encourage you to find your own balance between your work and personal lives.Mentorship & Career GrowthOur team is dedicated to supporting new members. We have a broad mix of experience levels and tenures, and we’re building an environment that celebrates knowledge sharing and mentorship. Our senior members enjoy one-on-one mentoring and thorough, but kind, code reviews. We care about your career growth and strive to assign projects based on what will help each team member develop into a better-rounded engineer and enable them to take on more complex tasks in the future.
US, CA, Palo Alto
Job summaryThe Amazon Search team creates powerful, customer-focused search and advertising solutions and technologies. Whenever a customer visits an Amazon site worldwide and types in a query or browses through product categories, the Amazon Search services go to work. We design, develop, and deploy high performance, fault-tolerant distributed search systems used by millions of Amazon customers every day. Our team works to maximize the quality and effectiveness of the search experience for visitors to Amazon websites worldwide.