ICML: “Test of time” paper shows how times have changed

Amazon scientist’s award-winning paper predates — but later found applications in — the deep-learning revolution.

Amazon researchers have nine new papers at this year’s International Conference on Machine Learning (ICML), one of the top conferences in AI. Matthias Seeger, a principal applied scientist with Amazon Web Services (AWS), is a coauthor on one of them, which reports work led by AWS applied scientist Cuong Nguyen.

But it’s a paper that Seeger cowrote ten years ago that’s one of the conference highlights. On July 1, the ICML awards committee announced that Seeger and his colleagues’ 2010 paper “Gaussian process optimization in the bandit setting: no regret and experimental design” had won the conference’s Test of Time Award, which honors “a paper from ICML ten years ago that has had substantial impact on the field of machine learning, including both research and practice.”

The citation from the award committee begins, “This paper brought together the fields of Bayesian optimization, bandits, and experimental design,” and it “has since cross-fertilized these separate research domains,” Seeger adds.

Matthias Seeger
Matthias Seeger, principal applied scientist

Bayesian-optimization and bandit problems have the same general structure, Seeger explains, but “Bayesian optimization is generally done over continuous input spaces and more complicated functions,” he says. “Multi-armed bandits would normally assume finite spaces and linear or otherwise strongly restricted payoff functions. Maybe because Bayesian optimization is more flexible in this sense, it comes with a lot less solid theory. Multi-armed bandits is a more theoretically grounded area.”

Seeger and his colleagues’ 2010 paper generalized theoretical findings from the multi-armed bandit setting to Bayesian optimization (BO), providing strong performance bounds given particular choices of statistical models. This gave machine learning practitioners greater confidence in techniques they’d arrived at empirically and helped them identify circumstances in which those techniques might be less successful.

In the context of deep learning — which now dominates the field of artificial intelligence — BO is used for hyperparameter tuning, or optimizing structural features of the deep-learning model and parameters of the learning algorithm to maximize the efficacy of training on particular data.

To prove their result for BO, Seeger and his colleagues extended techniques borrowed from a third related field, experimental design. The tools they devised to bridge the related disciplines of BO, multi-armed bandits, and experimental design have proved useful to researchers working in all three; the paper has more than 1,000 citations on Google Scholar, which have helped make Seeger the fourth most highly cited researcher in the field of Bayesian optimization.

Seeger’s coauthors on the 2010 paper are Niranjan Srinivas, now a computational biologist at 10xGenomics; Andreas Krause, now a professor of computer science at ETH Zurich; and Sham Kakade, now a professor in the departments of computer science and statistics at the University of Washington.

With Bayesian optimization, Seeger explains, “you are essentially optimizing a function over some search space without actually knowing what this function looks like. You have to learn about that function as you sample it. But your real goal is finding the function’s maximum, or to sample it nearby.”

“If you sample forever, at some point you will find its optima” he adds. “But since sampling is expensive and takes time, you want to finish as rapidly as possible. So what you are really interested in is to spend as few samples as possible before you converge to something useful, very close to the optimum.”

Temperature samples.png
An example of Seeger and his colleagues’ sample selection procedure, taken from their 2010 paper. The first image (a) represents temperatures in different parts of a building; the two images at right (b and c) represent successive iterations of the procedure, in which individual sensors are briefly activated to take temperature readings (red circles). The black line represents the true temperatures, and the grey areas represent the method’s latest inference of the range of possible temperatures in each region. Crosses indicate points at which readings have already been taken. The procedure selects new sample points with the goal of either maximizing information gain (b) or finding optima (c).

Seeger and his colleagues proved that, under conditions that frequently hold for machine learning problems, the sampling process is guaranteed to converge. But they also showed that the convergence rate depends on specific problem parameters.

In BO, the function that you’re trying to optimize is a random function, Seeger explains. “Every time you plug in a point x, you get a random value f(x),” he says. A standard way to do BO is to model the outputs of the function using a probability distribution. If that distribution is Gaussian — the standard bell curve — then Bayesian optimization is said to use a Gaussian process as a surrogate model.

One of the parameters of the surrogate model is its covariance function, which describes the correlation between changes to function inputs (the x’s) and the resulting changes to the outputs (the f(x)’s). There are several families of covariance function, with an infinite range of functions within each family.

Seeger and his colleagues’ paper quantitatively relates the convergence rate of the function-sampling procedure to the specific choice of covariance function.

“Some choices of covariance function imply smooth functions, which can faithfully be interpolated from measurements nearby,” Seeger says. “Others result in rough functions, for which interpolating even across short distances is an uncertain exercise.”

From theory to practice

Machine learning researchers had conjectured that rougher covariance functions, although they may model reality better, imply slower convergence on an optimum. Seeger and his colleagues’ paper quantified this trade-off precisely. It enabled researchers to decide how much roughness they were willing to sacrifice for faster convergence.

To bound convergence rates, Seeger and his colleagues borrowed techniques from experimental design. “Here you are interested in learning about a function, but not just where its maximum is — learning about it globally, or learning about a model everywhere,” Seeger explains.

A central concept in experimental design is information gain, a quantification of how much information about a function each new sample — each new experiment — confers. Seeger and his colleagues quantified the convergence rate in BO by framing the question in terms of information gain.

“It’s pretty theoretical work,” Seeger says. “It led to a lot of follow-up work because of the links that we could show. There is quite a bit of Gaussian-process theory being brought together here, which partly fuses the different themes together.”

At Amazon, Seeger says, his work on meta-learning and automated machine learning is less theoretical, but his training still stands him in good stead. “I do think that the background that I have from back then is quite useful for me to plan ahead, in a way, and to see whether something looks right or not,” Seeger says. “I think this is quite important, because due to the explosive growth of our field, there are now so many options you can pursue. You really cannot implement all of them and try them out. You need to have some guiding principles.”

Seeger’s transition from more theoretical to more applied work mirrors that of the field itself. In the ten years since he cowrote this award-winning paper, he says, “there’s been a huge change, with the size of the field, the practical applications, the size of the models, the size of the data sets.”

“Back then, maybe because it was smaller, there were ideas being followed that wouldn’t immediately have an application, and you were actually looking into theory quite a bit,” he says. “These days, it’s a lot more driven by empirical applications and empirical work. The field has matured and is very successful in some applications, so obviously you want to focus more on whether an idea is useful in the current context or not. And that’s certainly something that I’ve learned to do a lot more since I joined Amazon.”

Research areas

Related content

US, WA, Bellevue
The Worldwide Design Engineering (WWDE) organization delivers innovative, effective and efficient engineering solutions that continually improve our customers’ experience. WWDE optimizes designs throughout the entire Amazon value chain providing overall fulfillment solutions from order receipt to last mile delivery. We are seeking a Simulation Scientist to assist in designing and optimizing the fulfillment network concepts and process improvement solutions using discrete event simulations for our World Wide Design Engineering Team. Successful candidates will be visionary technical expert and natural self-starter who have the drive to apply simulation and optimization tools to solve complex flow and buffer challenges during the development of next generation fulfillment solutions. The Simulation Scientist is expected to deep dive into complex problems and drive relentlessly towards innovative solutions working with cross functional teams. Be comfortable interfacing and influencing various functional teams and individuals at all levels of the organization in order to be successful. Lead strategic modelling and simulation projects related to drive process design decisions. Responsibilities: - Lead the design, implementation, and delivery of the simulation data science solutions to perform system of systems discrete event simulations for significantly complex operational processes that have a long-term impact on a product, business, or function using FlexSim, Demo 3D, AnyLogic or any other Discrete Event Simulation (DES) software packages - Lead strategic modeling and simulation research projects to drive process design decisions - Be an exemplary practitioner in simulation science discipline to establish best practices and simplify problems to develop discrete event simulations faster with higher standards - Identify and tackle intrinsically hard process flow simulation problems (e.g., highly complex, ambiguous, undefined, with less existing structure, or having significant business risk or potential for significant impact - Deliver artifacts that set the standard in the organization for excellence, from process flow control algorithm design to validation to implementations to technical documents using simulations - Be a pragmatic problem solver by applying judgment and simulation experience to balance cross-organization trade-offs between competing interests and effectively influence, negotiate, and communicate with internal and external business partners, contractors and vendors for multiple simulation projects - Provide simulation data and measurements that influence the business strategy of an organization. Write effective white papers and artifacts while documenting your approach, simulation outcomes, recommendations, and arguments - Lead and actively participate in reviews of simulation research science solutions. You bring clarity to complexity, probe assumptions, illuminate pitfalls, and foster shared understanding within simulation data science discipline - Pay a significant role in the career development of others, actively mentoring and educating the larger simulation data science community on trends, technologies, and best practices - Use advanced statistical /simulation tools and develop codes (python or another object oriented language) for data analysis , simulation, and developing modeling algorithms - Lead and coordinate simulation efforts between internal teams and outside vendors to develop optimal solutions for the network, including equipment specification, material flow control logic, process design, and site layout - Deliver results according to project schedules and quality Key job responsibilities • You influence the scientific strategy across multiple teams in your business area. You support go/no-go decisions, build consensus, and assist leaders in making trade-offs. You proactively clarify ambiguous problems, scientific deficiencies, and where your team’s solutions may bottleneck innovation for other teams. A day in the life The dat-to-day activities include challenging and problem solving scenario with fun filled environment working with talented and friendly team members. The internal stakeholders are IDEAS team members, WWDE design vertical and Global robotics team members. The team solve problems related to critical Capital decision making related to Material handling equipment and technology design solutions. About the team World Wide Design EngineeringSimulation Team’s mission is to apply advanced simulation tools and techniques to drive process flow design, optimization, and improvement for the Amazon Fulfillment Network. Team develops flow and buffer system simulation, physics simulation, package dynamics simulation and emulation models for various Amazon network facilities, such as Fulfillment Centers (FC), Inbound Cross-Dock (IXD) locations, Sort Centers, Airhubs, Delivery Stations, and Air hubs/Gateways. These intricate simulation models serve as invaluable tools, effectively identifying process flow bottlenecks and optimizing throughput. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Seattle
Amazon's Global Fixed Marketing Campaign Measurement & Optimization (CMO) team is looking for a senior economic expert in causal inference and applied ML to advance the economic measurement, accuracy validation and optimization methodologies of Amazon's global multi-billion dollar fixed marketing spend. This is a thought leadership position to help set the long-term vision, drive methods innovation, and influence cross-org methods alignment. This role is also an expert in modeling and measuring marketing and customer value with proven capacity to innovate, scale measurement, and mentor talent. This candidate will also work closely with senior Fixed Marketing tech, product, finance and business leadership to devise science roadmaps for innovation and simplification, and adoption of insights to influence important resource allocation, fixed marketing spend and prioritization decisions. Excellent communication skills (verbal and written) are required to ensure success of this collaboration. The candidate must be passionate about advancing science for business and customer impact. Key job responsibilities - Advance measurement, accuracy validation, and optimization methodology within Fixed Marketing. - Motivate and drive data generation to size. - Develop novel, innovative and scalable marketing measurement techniques and methodologies. - Enable product and tech development to scale science solutions and approaches. A day in the life - Propose and refine economic and scientific measurement, accuracy validation, and optimization methodology to improve Fixed Marketing models, outputs and business results - Brief global fixed marketing and retails executives about FM measurement and optimization approaches, providing options to address strategic priorities. - Collaborate with and influence the broader scientific methodology community. About the team CMO's vision is to maximizing long-term free cash flow by providing reliable, accurate and useful global fixed marketing measurement and decision support. The team measures and helps optimize the incremental impact of Amazon (Stores, AWS, Devices) fixed marketing investment across TV, Digital, Social, Radio, and many other channels globally. This is a fully self supported team composed of scientists, economists, engineers, and product/program leaders with S-Team visibility. We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | San Francisco, CA, USA | Seattle, WA, USA | Sunnyvale, CA, USA
GB, Cambridge
Our team builds generative AI solutions that will produce some of the future’s most influential voices in media and art. We develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video, with Amazon Game Studios and Alexa, the ground-breaking service that powers the audio for Echo. Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language, Audio and Video technology. As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and generative AI models to drive the state of the art in audio (and vocal arts) generation. Position Responsibilities: * Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. * Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. * Research and implement novel ML and statistical approaches to add value to the business. * Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, TX, Austin
The Workforce Solutions Analytics and Tech team is looking for a senior Applied Scientist who is interested in solving challenging optimization problems in the labor scheduling and operations efficiency space. We are actively looking to hire senior scientists to lead one or more of these problem spaces. Successful candidates will have a deep knowledge of Operations Research and Machine Learning methods, experience in applying these methods to large-scale business problems, the ability to map models into production-worthy code in Python or Java, the communication skills necessary to explain complex technical approaches to a variety of stakeholders and customers, and the excitement to take iterative approaches to tackle big research challenges. As a member of our team, you'll work on cutting-edge projects that directly impact over a million Amazon associates. This is a high-impact role with opportunities to designing and improving complex labor planning and cost optimization models. The successful candidate will be a self-starter comfortable with ambiguity, with strong attention to detail and outstanding ability in balancing technical leadership with strong business judgment to make the right decisions about model and method choices. Successful candidates must thrive in fast-paced environments, which encourage collaborative and creative problem solving, be able to measure and estimate risks, constructively critique peer research, and align research focuses with the Amazon's strategic needs. Key job responsibilities • Candidates will be responsible for developing solutions to better manage and optimize flexible labor capacity. The successful candidate should have solid research experience in one or more technical areas of Operations Research or Machine Learning. As a senior scientist, you will also help coach/mentor junior scientists on the team. • In this role, you will be a technical leader in applied science research with significant scope, impact, and high visibility. You will lead science initiatives for strategic optimization and capacity planning. They require superior logical thinkers who are able to quickly approach large ambiguous problems, turn high-level business requirements into mathematical models, identify the right solution approach, and contribute to the software development for production systems. • Invent and design new solutions for scientifically-complex problem areas and identify opportunities for invention in existing or new business initiatives. • Successfully deliver large or critical solutions to complex problems in the support of medium-to-large business goals. • Apply mathematical optimization techniques and algorithms to design optimal or near optimal solution methodologies to be used for labor planning. • Research, prototype, simulate, and experiment with these models and participate in the production level deployment in Python or Java. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | Austin, TX, USA | Bellevue, WA, USA | Nashville, TN, USA | Seattle, WA, USA | Tempe, AZ, USA
CA, BC, Vancouver
Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Applied Scientist with a background in AI, Gen AI, Machine Learning, NLP, to help build LLM solutions for Amazon core shopping. Our team works on a variety of projects, including state of the art generative AI, LLM finetuning, alignment, prompt engineering, benchmarking solutions. Key job responsibilities As a Applied Scientist will be expected to work on state of the art technologies which will result in papers publications, however you will not be only theorizing about the algorithms, but you will also have the opportunity to implement them and see how they behave in the field. As a tech lead, this Applied scientist will also be expected to define the research direction, and influence multiple teams to build solutions that improve Amazon and Alexa customer experience. This is an incredible opportunity to validate your research on one of the most exciting Amazon AI products, where assumptions can be tested against real business scenarios and supported by an abundance of data. We are open to hiring candidates to work out of one of the following locations: Vancouver, BC, CAN
US, WA, Seattle
At Amazon, a large portion of our business is driven by third-party Sellers who set their own prices. The Pricing science team is seeking a Sr. Applied Scientist to use statistical and machine learning techniques to design, evangelize, and implement state-of-the-art solutions for never-before-solved problems, helping Marketplace Sellers offer Customers great prices. This role will be a key member of an Advanced Analytics team supporting Pricing related business challenges based in Seattle, WA. The Sr. Applied Scientist will work closely with other research scientists, machine learning experts, and economists to design and run experiments, research new algorithms, and find new ways to improve Seller Pricing to optimize the Customer experience. The Applied Scientist will partner with technology and product leaders to solve business and technology problems using scientific approaches to build new services that surprise and delight our customers. An Applied Scientist at Amazon applies scientific principles to support significant invention, develops code and are deeply involved in bringing their algorithms to production. They also work on cross-disciplinary efforts with other scientists within Amazon. The key strategic objectives for this role include: - Understanding drivers, impacts, and key influences on Pricing dynamics. - Optimizing Seller Pricing to improve the Customer experience. - Drive actions at scale to provide low prices and increased selection for customers using scientifically-based methods and decision making. - Helping to support production systems that take inputs from multiple models and make decisions in real time. - Automating feedback loops for algorithms in production. - Utilizing Amazon systems and tools to effectively work with terabytes of data. You can also learn more about Amazon science here - https://www.amazon.science/ We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, NY, New York
Where will Amazon's growth come from in the next year? What about over the next five? Which product lines are poised to quintuple in size? Are we investing enough in our infrastructure, or too much? How do our customers react to changes in prices, product selection, or delivery times? These are among the most important questions at Amazon today. The Topline Forecasting team in the Supply Chain Optimization Technologies (SCOT) group is looking for innovative, passionate and results-oriented Economists to answer these questions. You will have an opportunity to own the long-run outlook for Amazon’s global consumer business and shape strategic decisions at the highest level. The successful candidate will be able to formalize problem definitions from ambiguous requirements, build econometrics models using Amazon’s world-class data systems, and develop cutting-edge solutions for non-standard problems. Key job responsibilities · Develop new econometric models or improve existing approaches using scalable techniques. · Extract data for analysis and model development from large, complex datasets. · Closely work with engineering teams to build scalable, efficient systems that implement prototypes in production. · Apply economic theory to solve business problems in a fast moving environment. · Distill problem definitions from informal business requirements and communicate technical solutions to senior business leaders. · Drive innovation and best practices in applied research across the Amazon research science community. We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. Key job responsibilities On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. A day in the life You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. About the team The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for an Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. A day in the life On our team you will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, WA, Bellevue
We are seeking a passionate, talented, and inventive individual to join the Applied AI team and help build industry-leading technologies that customers will love. This team offers a unique opportunity to make a significant impact on the customer experience and contribute to the design, architecture, and implementation of a cutting-edge product. The mission of the Applied AI team is to enable organizations within Worldwide Amazon.com Stores to accelerate the adoption of AI technologies across various parts of our business. We are looking for a Senior Applied Scientist to join our Applied AI team to work on LLM-based solutions. We are seeking an experienced Scientist who combines superb technical, research, analytical and leadership capabilities with a demonstrated ability to get the right things done quickly and effectively. This person must be comfortable working with a team of top-notch developers and collaborating with our research teams. We’re looking for someone who innovates, and loves solving hard problems. You will be expected to have an established background in building highly scalable systems and system design, excellent project management skills, great communication skills, and a motivation to achieve results in a fast-paced environment. You should be somebody who enjoys working on complex problems, is customer-centric, and feels strongly about building good software as well as making that software achieve its operational goals. Key job responsibilities You will be responsible for developing and maintaining the systems and tools that enable us to accelerate knowledge operations and work in the intersection of Science and Engineering. You will push the boundaries of ML and Generative AI techniques to scale the inputs for hundreds of billions of dollars of annual revenue for our eCommerce business. If you have a passion for AI technologies, a drive to innovate and a desire to make a meaningful impact, we invite you to become a valued member of our team. We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA