Customer-obsessed science
Research areas
-
December 5, 20256 min readA multiagent architecture separates data perception, tool knowledge, execution history, and code generation, enabling ML automation that works with messy, real-world inputs.
-
-
-
November 20, 20254 min read
-
October 20, 20254 min read
Featured news
-
ICLR 2021 Workshop on Neural Architecture Search2021In addition to the best model architecture and hyperparameters, a full AutoML solution requires selecting appropriate hardware automatically. This can be framed as a multi-objective optimization problem: there is not a single best hardware configuration but a set of optimal ones achieving different trade-offs between cost and runtime. In practice, some choices may be overly costly or take days to train.
-
Signal Processing Journal2021In this paper, we consider compressive inversion of a signal/image that is sparse in typical orthonormal bases used in image processing, given its measurements that have been corrupted by Poisson noise. The square-root operation is known to convert a Poisson random variable into one that is approximately Gaussian distributed with a constant variance. We present two different computationally tractable, penalized
-
Interspeech 20212021Automatic speech recognition (ASR) in the cloud allows the use of larger models and more powerful multi-channel signal processing front-ends compared to on-device processing. However, it also adds an inherent latency due to the transmission of the audio signal, especially when transmitting multiple channels of a microphone array. One way to reduce the network bandwidth requirements is client-side compression
-
ACL-IJCNLP 20212021Recent works have made significant advances on summarization tasks, facilitated by summarization datasets. Several existing datasets have the form of coherent-paragraph summaries. However, these datasets were curated from academic documents written for experts, making the essential step of assessing the summarization output through human evaluation very demanding. To overcome these limitations, we present
-
ACL-IJCNLP 20212021Natural Language Generation (NLG) is a key component in a task-oriented dialogue system, which converts the structured meaning representation (MR) to the natural language. For large-scale conversational systems, where it is common to have over hundreds of intents and thousands of slots, neither template-based approaches nor model-based approaches are scalable. Recently, neural NLGs started leveraging transfer
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all