Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
NAACL 20222022Conditional neural text generation models generate high-quality outputs, but often concentrate around a mode when what we really want is a diverse set of options. We present a search algorithm to construct lattices encoding a massive number of generation options. First, we restructure decoding as a best-first search, which explores the space differently than beam search and improves efficiency by avoiding
-
IWSLT 20222022This paper describes Amazon Alexa AI’s implementation for the IWSLT 2022 shared task on formality control. We focus on the unconstrained and supervised task for en→hi (Hindi) and en→ja (Japanese) pairs where very limited formality annotated data is available. We propose three simple yet effective post editing strategies namely, T-V conversion, utilizing a verb conjugator and seq2seq models in order to rewrite
-
CVPR 20222022Estimating a semantically segmented bird’s-eye-view (BEV) map from a single image has become a popular technique for autonomous control and navigation. However, they show an increase in localization error with distance from the camera. While such an increase in error is entirely expected – localization is harder at distance – much of the drop in performance can be attributed to the cues used by current
-
ICASSP 20222022Speech Emotion Recognition (SER) has several use cases for Digital Entertainment Content (DEC) in Over-the-top (OTT) services, emotive Text-to-Speech (TTS) engines and voice assistants. In this work, we present a Multi-Lingual (MLi) and Multi-Task Learning (MTL) audio only SER system based on the multi-lingual pre-trained wav2vec 2.0 model. The model is fine-tuned on 25 open source datasets in 13 locales
-
CVPR 20222022Text spotting end-to-end methods have recently gained attention in the literature due to the benefits of jointly optimizing the text detection and recognition components. Existing methods usually have a distinct separation between the detection and recognition branches, requiring exact annotations for the two tasks. We introduce TextTranSpotter (TTS), a transformer-based approach for text spotting and the
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all