Customer-obsessed science


Research areas
-
July 29, 2025New cost-to-serve-software metric that accounts for the full software development lifecycle helps determine which software development innovations provide quantifiable value.
Featured news
-
IEEE Robotics and Automation Letters2025We extend our previous work, PoCo [1], and present a new algorithm, Cross-Source-Context Place Recognition (CSCPR), for RGB-D indoor place recognition that integrates global retrieval and reranking into an end-to-end model and keeps the consistency of using Context-of-Clusters (CoCs) [2] for feature processing. Unlike prior approaches that primarily focus on the RGB domain for place recognition reranking
-
AISTATS 20252025Covariates provide valuable information on external factors that influence time series and are critical in many real-world time series forecasting tasks. For example, in retail, covariates may indicate promotions or peak dates such as holiday seasons that heavily influence demand forecasts. Recent advances in pre-training large language model architectures for time series forecasting have led to highly
-
2025Recent years have witnessed significant advancements in graph machine learning (GML), with its applications spanning numerous domains. However, the focus of GML has predominantly been on developing powerful models, often overlooking a crucial initial step: constructing suitable graphs from common data formats, such as tabular data. This construction process is fundamental to applying graph-based models,
-
2025Large Language Models (LLMs) have demonstrated remarkable performance across various tasks. However, they are prone to contextual hallucination, generating information that is either unsubstantiated or contradictory to the given context. Although many studies have investigated contextual hallucinations in LLMs, addressing them in long-context inputs remains an open problem. In this work, we take an initial
-
2025To use generative question-and-answering (QA) systems for decision-making and in any critical application, these systems need to provide well-calibrated confidence scores that reflect the correctness of their answers. Existing calibration methods aim to ensure that the confidence score is on average indicative of the likelihood that the answer is correct. We argue, however, that this standard (average-case
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all