Customer-obsessed science
Research areas
-
December 1, 20258 min read“Network language models” will coordinate complex interactions among intelligent components, computational infrastructure, access points, data centers, and more.
-
-
November 20, 20254 min read
-
October 20, 20254 min read
-
October 14, 20257 min read
Featured news
-
2025Text-to-SQL systems translate natural language (NL) questions into SQL queries, enabling non-technical users to interact with structured data. While large language models (LLMs) have shown promising results on the text-to-SQL task, they often produce semantically incorrect yet syntactically valid queries, with limited insight into their reliability. We propose SQLENS, an end-to-end framework for fine-grained
-
2025As machine learning (ML) systems are increasingly deployed in high-stakes domains, the need for robust methods to assess fairness has become more critical. While statistical fairness metrics are widely used due to their simplicity, they are limited in their ability to explain why disparities occur, as they rely on associative relationships in the data. In contrast, causal fairness metrics aim to uncover
-
arXiv2025Despite rapid progress in LLM agents, performance on long-horizon, tool-using tasks remains fragile. To better understand this fragility, we ask a simple question: do all actions contribute equally to failure? Analyzing execution traces on τ-Bench (Airline/Retail) and SWE-Bench Verified, we decompose trajectories into mutating (environment-changing) vs. non-mutating steps and formalize de-cisive deviations—earliest
-
NeurIPS 2025 Workshop on Evaluating the Evolving LLM Lifecycle2025Error attribution in Large Language Model (LLM) multi-agent systems presents a significant challenge in debugging and improving collaborative AI systems. Current approaches to pinpointing agent and step level failures in multi-agent interaction traces—whether using all-at-once evaluation, step-by-step analysis, or binary search—fall short when analyzing complex patterns, struggling with both accuracy and
-
NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models2025Many time series applications require access to multi-step forecast trajectories in the form of sample paths. Recently, time series foundation models have leveraged multi-step lookahead predictions to improve the quality and efficiency of multi-step forecasts. However, these models only predict independent marginal distributions for each time step, rather than a full joint predictive distribution. To generate
Collaborations
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all