Customer-obsessed science


Research areas
-
August 26, 2025With a novel parallel-computing architecture, a CAD-to-USD pipeline, and the use of OpenUSD as ground truth, a new simulator can explore hundreds of sensor configurations in the time it takes to test just a few physical setups.
Featured news
-
2024A large branch of explainable machine learning is grounded in cooperative game theory. However, research indicates that game-theoretic explanations may mislead or be hard to interpret. We argue that often there is a critical mismatch between what one wishes to explain (e.g. the output of a classifier) and what current methods such as SHAP explain (e.g. the scalar probability of a class). This paper addresses
-
FaCT 20242024Updates to Machine Learning as a Service (MLaaS) APIs may affect downstream systems that depend on their predictions. However, performance changes introduced by these updates are poorly documented by providers and seldom studied in the literature. As a result, API producers and consumers are left wondering: do model updates introduce performance changes that could adversely affect users’ system? Ideally
-
2024Quantifying the degree of similarity between images is a key copyright issue for image-based machine learning. In legal doctrine however, determining the degree of similarity between works requires subjective analysis, and fact-finders (judges and juries) can demonstrate considerable variability in these subjective judgement calls. Images that are structurally similar can be deemed dissimilar, whereas images
-
ASPLOS 20242024Relational graph neural networks (RGNNs) are graph neural networks with dedicated structures for modeling the different types of nodes and edges in heterogeneous graphs. While RGNNs have been increasingly adopted in many real-world applications due to their versatility and accuracy, they pose performance and system design challenges: inherent memory-intensive computation patterns, the gap between the programming
-
ACL Findings 20242024Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance
Academia
View allWhether you're a faculty member or student, there are number of ways you can engage with Amazon.
View all