Animation shows a map of the United States and each of the 8 individual regions that resulted from Amazon's regionalization effort
Amazon's regionalization plan, which resulted in the eight regions seen here, has already proven successful: The percentage of customer orders being fulfilled entirely from FCs within each region has jumped to 76% — and is expected to continue to climb.

Sizing down to scale up: How Amazon reworked its fulfillment network to meet customer demand

The pandemic turbo-charged retail growth — teams of scientists at Amazon forged a path forward to handle the scale.

In 2020, Amazon’s retail fulfillment network in the U.S. expanded at a rapid clip. What followed was a dramatic — and swift — operational pivot.

This is the story of how Amazon’s national network of U.S. fulfillment centers (FCs), intermediate sorting centers, “last mile” delivery hubs, and transportation fleet were successfully restructured into eight largely self-sufficient regional networks, while retaining national coverage. The transformation was dubbed “regionalization.”

Operations research at Amazon
How Amazon’s scientists developed a first-of-its-kind multi-echelon system for inventory buying and placement.

The COVID pandemic was a key factor in two ways. Due to lockdowns or otherwise, people were staying home and ordering more online than ever before.

“Our focus moved from trying to figure out how to make customer deliveries as fast as possible to trying to meet exceptional customer demand by pushing as much volume as we could through our network,” says Adam Baker, Amazon’s vice president of global transportation.

It was in late 2020 that a long-term planning science team led by research director Amitabh Sinha sent up a warning flare: the fast-growing network risked becoming overcomplicated and unwieldy.

“We projected our scenario out to three or four years and took this to Amazon’s leadership with an idea of how to do things differently,” he says. That idea contained the seed that would grow into regionalization.

Joining the dots

The crux of the issue was that Amazon was trying to connect too many physical dots. Its fulfillment infrastructure made sense when it had fewer FCs, because it meant customers across the U.S. could tap into Amazon’s full product range. And with fewer FCs, the trucks carrying the products across the country were fuller, so it was cost-effective.

As the number of FCs and other fulfillment buildings in the U.S. rose sharply, that approach started to look like it might not be the right long-term path. “We would fulfill customer orders from the FCs near them until we couldn’t anymore, and then — okay, it's coming from wherever we still have capacity,” says Russell Allgor, Amazon’s chief scientist for worldwide operations. That “wherever” was the problem.

Operations research at Amazon
The SCOT science team used lessons from the past — and improved existing tools — to contend with “a peak that lasted two years”.

It meant each of Amazon’s FCs was serving not only its locality, but also customer locations all over the U.S. To illustrate the problem, imagine you had to deliver 10,000 products nationwide, quickly, to 100 distant locations, from 10 FCs across the country. You could have each FC dispatch 100 trucks, each carrying 10 items, to each of the locations. That’s 1,000 long-haul trucks and a lot of rubber on the road — clearly an unsustainable idea on all fronts.

Now imagine that you could partition the 100 customer locations into 10 regions of 10 locations apiece, with each region served by a dedicated FC. In this scenario, each region’s FC can dispatch 10 trucks, each carrying 100 packages a piece. That would require just 100 trucks nationwide, driving much shorter distances. That’s faster for customers and more sustainable: a win-win situation. That’s regionalization in a nutshell, and by mid-2021, Amazon threw its full weight behind the idea.

Picking the number

For about a year, Sinha and his team used state-of-the-art network-optimization tools to model and simulate the many potential ways customer orders might flow through a regionalized system, and what effect different configurations would have on delivery speeds and transport costs. There was an enormous number of potential scenarios to explore.

Operations research at Amazon
How the Amazon Logistics Research Science team guides important decisions related to last-mile delivery.

“We were dealing with millions of variables and constraints, and a lot of uncertainty,” says Cristiana Lara, a senior research scientist who worked on estimating the financial impacts of the initiative. “That’s not surprising, because we were completely shifting the paradigm of how we fulfill customer orders.”

A critical early question was how many regions to form. The smaller the regions, the faster the customer deliveries, because Amazon’s inventory would be closer to customers. “In addition to speedy deliveries, the crucial thing was that each region must carry the breadth of selection that customers expect” says Sinha.

The ambitious aim? To have a high proportion of the tens of millions of products offered in the store available to customers within each region, with the rest shipped from further afield only when needed.

Amazon's regionalization map, with 8 regions overlaid over a map of the United States, is seen here
A critical piece of regionalization was using the insights to map out more efficient, shorter routes for orders. As soon as a customer clicks the "buy now" button, Amazon's Adaptive TRansportation OPtimization Service (ATROPS) assigns the optimal route for the purchased item.

With this goal in mind, the collaborators alighted on the number: eight regions. That was as high as they could go without sacrificing speed or requiring excessive inter-regional movement of inventory to meet customer orders, which would defeat the purpose of the exercise.

“We ran extensive, fine-grained analysis for pretty much the entirety of 2022, examining in turn the different aspects of how it would all work,” says Sinha, whose team worked closely with Amazon’s Global Transportation Service (GTS) – which designs, plans, and executes the Amazon Transportation network.

Before long, a timeline was put in place. Come January 18, 2023, the newly minted Northeast and Mid-Atlantic Amazon regions would pioneer this new fulfillment pattern, with the other six regions slated to follow thereafter.

Flipping the switch

A critical piece of regionalization was using the insights supplied to map out more efficient, shorter routes for orders. As soon as a customer clicks the "buy now" button, Amazon's Adaptive TRansportation OPtimization Service (ATROPS) assigns the optimal route for the purchased item. The transportation team devoted the latter part of 2022 to overhauling and testing a completely new set of ATROPS routes designed specifically for this regionalization plan.

Operations research at Amazon
INFORMS talk explores techniques Amazon’s Supply Chain Optimization Technologies organization is testing to fulfill customer orders more efficiently.

On January 18, with the 2022 holiday rush safely in the rearview mirror, it was time to make the leap. The transportation team had contingency plans in place, and colleagues in different global time zones were standing by to offer around-the-clock support if something went wrong.

“We flipped the switch overnight, and immediately started to see the results we were hoping for. It changed faster than any of us expected. It was delightful,” says Nick McCabe, senior manager of GTS network design.

“We had some minor concerns to work through,” Baker adds, “but our delivery speed instantly picked up and our customers saw the benefit in their orders right away.”

Overall, the transition went so well, Amazon brought forward the complete activation of the other regions by a full month.

Rapid results

Regionalization is working. Before the switch, the percentage of customer orders being fulfilled entirely from FCs within what would become each region was 62%. That figure has already surged to 76% — a stunning efficiency gain — and is expected to continue to climb.

Delivery speeds have also picked up, says Sinha, because more goods are travelling shorter distances. And this effect will only strengthen as regionalization continues to take root.

Another quick success of regionalization was how much fuller a subset of Amazon’s trucks has become. Most customer orders leave an FC and are transported to a sorting center, which receives and consolidates customer orders, filling up the trucks that take them to delivery stations for the “last mile” of their journey. Sometimes, for logistical reasons, FCs send trucks directly to delivery stations. Post-regionalization, because there are fewer FCs shipping more packages to each destination, there is greater opportunity to operate these FC-to-delivery station direct trucks, resulting in more efficient delivery routes.

“Suddenly, 70 to 80 per cent of the order volume is not coming from FCs scattered around the country, but from, say, 10 FCs inside the region, so trucks on these short-distance direct lanes are now showing a great fill rate,” says senior applied scientist Semih Atakan, who models how products flow between Amazon’s FCs and delivery stations.

Regionalization has also transformed how the wider national network is managed.

“Before, it was difficult to control the whole network because of our sheer number of trucking lanes,” says Baker. “It was like pushing on a giant spiderweb.” Post-regionalization, he says, that number of lanes reduced markedly, making it much easier to make choices about when and how much to ship between regions.

Scanning the horizon

And this is just the beginning, says research scientist Xiaoyan Si, who is modeling how the fulfillment network might evolve over the next three years.

“Eight regions is our starting point. As we move forward, we will have the opportunity create smaller geographic regions with as much demand per region as we have today,” says Si. “Using the data we have now, we can place future fulfillment buildings more strategically, and we are working with other researchers on the team to design new regions more scientifically.”

Smaller regions will enable Amazon to deliver even faster to customers, while making each region even more efficient in terms of distance travelled, inventory management and truck fill.

Amazon’s Day One culture places great value on horizon scanning, innovation, and risk-taking to deliver customer benefits. The regionalization initiative that sprang from this mindset is a testament not only to the vision and enormous team effort required to pull it off, but also to the flexibility of Amazon’s infrastructure.

Because despite being Amazon’s biggest operational transformation in a decade, it was completely reversible had it misfired. After all, says Si, in what might be the understatement of the year: “When you boil it right down, regionalization is just a software setting.”

View from space of a connected network around planet Earth representing the Internet of Things.
Sign up for our newsletter

Related content

US, WA, Seattle
The Amazon Economics Team is hiring Economist Interns. We are looking for detail-oriented, organized, and responsible individuals who are eager to learn how to work with large and complicated data sets to solve real-world business problems. Some knowledge of econometrics, as well as basic familiarity with Stata, R, or Python is necessary. Experience with SQL, UNIX, Sawtooth, and Spark would be a plus. These are full-time positions at 40 hours per week, with compensation being awarded on an hourly basis. You will learn how to build data sets and perform applied econometric analysis at Internet speed collaborating with economists, data scientists and MBAʼs. These skills will translate well into writing applied chapters in your dissertation and provide you with work experience that may help you with future job market placement. Roughly 85% of interns from previous cohorts have converted to full-time economics employment at Amazon. If you are interested, please send your CV to our mailing list at econ-internship@amazon.com. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
GB, Cambridge
Our team undertakes research together with multiple organizations to advance the state-of-the-art in speech technologies. We not only work on giving Alexa, the ground-breaking service that powers Echo, her voice, but we also develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video. Do you want to be part of the team developing the latest technology that impacts the customer experience of ground-breaking products? Then come join us and make history. We are looking for a passionate, talented, and inventive Senior Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language and Video technology. As a Senior Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and modelling techniques to drive the state of the art in speech and vocal arts synthesis. Position Responsibilities: - Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications. - Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications. - Research and implement novel ML and statistical approaches to add value to the business. - Mentor junior engineers and scientists. We are open to hiring candidates to work out of one of the following locations: Cambridge, GBR
US, VA, Arlington
The People eXperience and Technology Central Science Team (PXTCS) uses economics, behavioral science, statistics, and machine learning to proactively identify mechanisms and process improvements which simultaneously improve Amazon and the lives, wellbeing, and the value of work to Amazonians. We are an interdisciplinary team that combines the talents of science and engineering to develop and deliver solutions that measurably achieve this goal. We are looking for economists who are able to apply economic methods to address business problems. The ideal candidate will work with engineers and computer scientists to estimate models and algorithms on large scale data, design pilots and measure their impact, and transform successful prototypes into improved policies and programs at scale. We are looking for creative thinkers who can combine a strong technical economic toolbox with a desire to learn from other disciplines, and who know how to execute and deliver on big ideas as part of an interdisciplinary technical team. Ideal candidates will work in a team setting with individuals from diverse disciplines and backgrounds. They will work with teammates to develop scientific models and conduct the data analysis, modeling, and experimentation that is necessary for estimating and validating models. They will work closely with engineering teams to develop scalable data resources to support rapid insights, and take successful models and findings into production as new products and services. They will be customer-centric and will communicate scientific approaches and findings to business leaders, listening to and incorporate their feedback, and delivering successful scientific solutions. Key job responsibilities Use reduced-form causal analysis and/or structural economic modeling methods to evaluate the impact of policies on employee outcomes, and examine how external labor market and economic conditions impact Amazon's ability to hire and retain talent. A day in the life Work with teammates to apply economic methods to business problems. This might include identifying the appropriate research questions, writing code to implement a DID analysis or estimate a structural model, or writing and presenting a document with findings to business leaders. Our economists also collaborate with partner teams throughout the process, from understanding their challenges, to developing a research agenda that will address those challenges, to help them implement solutions. About the team We are a multidisciplinary team that combines the talents of science and engineering to develop innovative solutions to make Amazon Earth's Best Employer. We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA
US, WA, Seattle
We are expanding our Global Risk Management & Claims team and insurance program support for Amazon’s growing risk portfolio. This role will partner with our risk managers to develop pricing models, determine rate adequacy, build underwriting and claims dashboards, estimate reserves, and provide other analytical support for financially prudent decision making. As a member of the Global Risk Management team, this role will provide actuarial support for Amazon’s worldwide operation. Key job responsibilities ● Collaborate with risk management and claims team to identify insurance gaps, propose solutions, and measure impacts insurance brings to the business ● Develop pricing mechanisms for new and existing insurance programs utilizing actuarial skills and training in innovative ways ● Build actuarial forecasts and analyses for businesses under rapid growth, including trend studies, loss distribution analysis, ILF development, and industry benchmarks ● Design actual vs expected and other metrics dashboards to assist decision makings in pricing analysis ● Create processes to monitor loss cost and trends ● Propose and implement loss prevention initiatives with impact on insurance pricing in mind ● Advise underwriting decisions with analysis on driver risk profile ● Support insurance cost budgeting activities ● Collaborate with external vendors and other internal analytics teams to extract insurance insight ● Conduct other ad hoc pricing analyses and risk modeling as needed We are open to hiring candidates to work out of one of the following locations: Arlington, VA, USA | New York, NY, USA | Seattle, WA, USA
US, NY, New York
The Amazon SCOT Forecasting team seeks a Senior Applied Scientist to join our team. Our research team conducts research into the theory and application of reinforcement learning. This research is shared in top journals and conferences and has a significant impact on the field. Through our launch of several Deep RL models into production, our work also affects decision making in the real world. Members of our group have varied interests—from the mathematical foundations of reinforcement learning, to language modeling, to maintaining the performance of generative models in the face of copyrights, and more. Recent work has focused on sample efficiency of RL algorithms, treatment effect estimation, and RL agents integrating real-world constraints, as applied in supply chains. Previous publications include: - Linear Reinforcement Learning with Ball Structure Action Space - Meta-Analysis of Randomized Experiments with Applications to Heavy-Tailed Response Data - A Few Expert Queries Suffices for Sample-Efficient RL with Resets and Linear Value Approximation - Deep Inventory Management - What are the Statistical Limits of Offline RL with Linear Function Approximation? Working collaboratively with a group of fellow scientists and engineers, you will identify complex problems and develop solutions in the RL space. We encourage collaboration across teammates and their areas of specialty, leading to creative and ambitious projects with the goal of publication and production. Key job responsibilities - Drive collaborative research and creative problem solving - Constructively critique peer research; mentor junior scientists - Create experiments and prototype implementations of new algorithms and techniques - Collaborate with engineering teams to design and implement software built on these new algorithms - Contribute to progress of the Amazon and broader research communities by producing publications We are open to hiring candidates to work out of one of the following locations: New York, NY, USA
US, CA, Virtual Location - California
If you are interested in this position, please apply on Twitch's Career site https://www.twitch.tv/jobs/en/ About Us: Launched in 2011, Twitch is a global community that comes together each day to create multiplayer entertainment: unique, live, unpredictable experiences created by the interactions of millions. We bring the joy of co-op to everything, from casual gaming to world-class esports to anime marathons, music, and art streams. Twitch also hosts TwitchCon, where we bring everyone together to celebrate and grow their personal interests and passions. We're always live at Twitch. About the Role: As a Data Scientist, Analytics member of the Data Platform - Insights team, you'll provide data analysis and support for platform, service, and operational engineering teams at Twitch, shaping the way success is measured. Defining what questions should be asked and scaling analytics methods and tools to support our growing business. Additionally, you will help support the vision for business analytics, solutions architecture for data related business constructs, as well as tactical execution such as experiment analysis and campaign performance reporting. You are paving the way for high-quality, high-velocity decisions and will report to the Manager, Data Science. For this role, we're looking for an experienced data staff who will oversee data instrumentation, dashboard/report building, metrics reviews, inform team investments, guidance on success/failure metrics and ad-hoc analysis. You will also work with technical and non-technical staff members throughout the company, and your effort will have an impact on hundreds of partners at Twitch You Will: - Work with members of Platforms & Services to guide them towards better decision making from the available data. - Promote data knowledge and insights through managing communications with partners and other teams, collaborate with colleagues to complete data projects and ensure all parties can use the insights to further improve. - Maintain a customer-centric focus while being a domain and product expert through data, develop trust amongst peers, and ensure that the teams and programs have access to data to make decisions - Manage ambiguous problems and adapt tools to answer complicated questions. - Identify the trade-offs between speed and quality of different approaches. - Create analytical frameworks to measure team success by partnering with teams to establish success metrics, create approaches to track the data and troubleshoot errors, measure and evaluate the data to develop a common language for all colleagues to understand these metrics. - Operationalize data processes to provide partners with ad-hoc analysis, automated dashboards, and self-service reporting tools so that everyone gets a good sense of the state of the business Perks: - Medical, Dental, Vision & Disability Insurance - 401(k), Maternity & Parental Leave - Flexible PTO - Commuter Benefits - Amazon Employee Discount - Monthly Contribution & Discounts for Wellness Related Activities & Programs (e.g., gym memberships, off-site massages), -Breakfast, Lunch & Dinner Served Daily - Free Snacks & Beverages We are open to hiring candidates to work out of one of the following locations: Irvine, CA, USA | Seattle, WA, USA | Virtual Location - CA
US, WA, Bellevue
Have you ever ordered a product on Amazon and when that box with the smile arrived you wondered how it got to you so fast? Have you wondered where it came from and how much it cost Amazon to deliver it to you? Have you also wondered what are different ways that the transportation assets can be used to delight the customer even more. If so, the Amazon transportation Services, Product and Science is for you . We manage the delivery of tens of millions of products every week to Amazon’s customers, achieving on-time delivery in a cost-effective manner. We are looking for an enthusiastic, customer obsessed Applied Scientist with strong scientific thinking, good software and statistics experience, skills to help manage projects and operations, improve metrics, and develop scalable processes and tools. The primary role of an Applied Scientist within Amazon is to address business challenges through building a compelling case, and using data to influence change across the organization. This individual will be given responsibility on their first day to own those business challenges and the autonomy to think strategically and make data driven decisions. Decisions and tools made in this role will have significant impact to the customer experience, as it will have a major impact on how we operate the middle mile network. Ideal candidates will be a high potential, strategic and analytic graduate with a PhD in (Operations Research, Statistics, Engineering, and Supply Chain) ready for challenging opportunities in the core of our world class operations space. Great candidates have a history of operations research, machine learning , and the ability to use data and research to make changes. This role requires robust skills in research and implementation of scalable products and models . This individual will need to be able to work with a team, but also be comfortable making decisions independently, in what is often times an ambiguous environment. Responsibilities may include: - Develop input and assumptions based preexisting models to estimate the costs and savings opportunities associated with varying levels of network growth and operations - Creating metrics to measure business performance, identify root causes and trends, and prescribe action plans - Managing multiple projects simultaneously - Working with technology teams and product managers to develop new tools and systems to support the growth of the business - Communicating with and supporting various internal stakeholders and external audiences We are open to hiring candidates to work out of one of the following locations: Bellevue, WA, USA
US, CA, Los Angeles
The Alexa team is looking for a passionate, talented, and inventive Applied Scientist with a strong machine learning background, to help build industry-leading Speech and Language technology. Key job responsibilities As an Applied Scientist with the Alexa team, you will work with talented peers to develop novel algorithms and modeling techniques to advance the state of the art in spoken language understanding. Your work will directly impact our customers in the form of products and services that make use of speech and language technology. You will leverage Amazon’s heterogeneous data sources and large-scale computing resources to accelerate advances in spoken language understanding. About the team The Alexa team has a mission to push the envelope in Automatic Speech Recognition (ASR), Natural Language Understanding (NLU), and Audio Signal Processing, in order to provide the best-possible experience for our customers. We are open to hiring candidates to work out of one of the following locations: Los Angeles, CA, USA
US, WA, Seattle
Are you fascinated by the power of Natural Language Processing (NLP) and Large Language Models (LLM) to transform the way we interact with technology? Are you passionate about applying advanced machine learning techniques to solve complex challenges in the e-commerce space? If so, Amazon's International Seller Services team has an exciting opportunity for you as an Applied Scientist. At Amazon, we strive to be Earth's most customer-centric company, where customers can find and discover anything they want to buy online. Our International Seller Services team plays a pivotal role in expanding the reach of our marketplace to sellers worldwide, ensuring customers have access to a vast selection of products. As an Applied Scientist, you will join a talented and collaborative team that is dedicated to driving innovation and delivering exceptional experiences for our customers and sellers. You will be part of a global team that is focused on acquiring new merchants from around the world to sell on Amazon’s global marketplaces around the world. The position is based in Seattle but will interact with global leaders and teams in Europe, Japan, China, Australia, and other regions. Join us at the Central Science Team of Amazon's International Seller Services and become part of a global team that is redefining the future of e-commerce. With access to vast amounts of data, cutting-edge technology, and a diverse community of talented individuals, you will have the opportunity to make a meaningful impact on the way sellers engage with our platform and customers worldwide. Together, we will drive innovation, solve complex problems, and shape the future of e-commerce. Please visit https://www.amazon.science for more information Key job responsibilities - Apply your expertise in LLM models to design, develop, and implement scalable machine learning solutions that address complex language-related challenges in the international seller services domain. - Collaborate with cross-functional teams, including software engineers, data scientists, and product managers, to define project requirements, establish success metrics, and deliver high-quality solutions. - Conduct thorough data analysis to gain insights, identify patterns, and drive actionable recommendations that enhance seller performance and customer experiences across various international marketplaces. - Continuously explore and evaluate state-of-the-art NLP techniques and methodologies to improve the accuracy and efficiency of language-related systems. - Communicate complex technical concepts effectively to both technical and non-technical stakeholders, providing clear explanations and guidance on proposed solutions and their potential impact. We are open to hiring candidates to work out of one of the following locations: Seattle, WA, USA
US, CA, Palo Alto
We’re working to improve shopping on Amazon using the conversational capabilities of large language models. We are open to hiring candidates to work out of one of the following locations: Palo Alto, CA, USA